One-shot set-membership identification of Wiener models with polynomial nonlinearities

Abstract In this paper we propose a novel approach for set-membership identification of Wiener models when the static output map is a polynomial nonlinearity which, in general, is not assumed to be invertible. Two different estimators are considered in the paper. A setvalued estimator for the computation of the so-called parameter uncertainty intervals and a pointwise estimator aimed at the minimization of the error between the output of the estimated system and the measured one (output error minimization). A unified approach based on the formulation of a suitable semialgebraic optimization problem is proposed for the solution of the considered estimation problems. The proposed approach, which takes to one-shot estimation of the parameters values of both the linear and the nonlinear block, overcomes the main limitations of the approaches already available in the literature for set-membership identification of Wiener models. More precisely, it is not needed anymore any restrictive assumption on the nonlinearity invertibility. Effectiveness of the proposed algorithm is shown by means of a simulation example.

[1]  Sandor M. Veres,et al.  Polyhedron Updating and Relaxation for On-Line Parameter and State Bounding , 1994 .

[2]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[3]  Andrea Garulli,et al.  Conditional central algorithms for worst case set-membership identification and filtering , 2000, IEEE Trans. Autom. Control..

[4]  M. Marshall,et al.  Representations of Non-Negative Polynomials, Degree Bounds and Applications to Optimization , 2009, Canadian Journal of Mathematics.

[5]  Michel Verhaegen,et al.  Recursive subspace identification of linear and non-linear Wiener state-space models , 2000, Autom..

[6]  Mario Milanese,et al.  Properties of least squares estimates in set membership identification, , 1995, Autom..

[7]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: LNL cascade models , 1986, Biological Cybernetics.

[8]  R. Tempo,et al.  Optimal algorithms theory for robust estimation and prediction , 1985 .

[9]  S. Billings,et al.  Identification of nonlinear systems using the Wiener model , 1977 .

[10]  Lennart Ljung Perspectives on System Identification , 2008 .

[11]  Michel Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1996, Signal Process..

[12]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[13]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[14]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[15]  Andrea Garulli,et al.  Optimal induced-norm and set membership state smoothing and filtering for linear systems with bounded disturbances , 1999, Autom..

[16]  Dario Piga,et al.  Improved parameter bounds for set‐membership EIV problems , 2011 .

[17]  Vito Cerone,et al.  Parameter bounds evaluation of Wiener models with noninvertible polynomial nonlinearities , 2006, Autom..

[18]  Le Yi Wang,et al.  Identification of Wiener systems with binary-valued output observations , 2007, Autom..

[19]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[20]  V. Cerone,et al.  Bounded error identification of Hammerstein systems through sparse polynomial optimization , 2012, Autom..

[21]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[22]  Yucai Zhu,et al.  Distillation column identification for control using Wiener model , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[23]  A. Garulli,et al.  Block recursive parallelotopic bounding in set membership identification , 1998 .

[24]  Shuzhi Sam Ge,et al.  Adaptive control for a discrete-time first-order nonlinear system with both parametric and non-parametric uncertainties , 2007, 2007 46th IEEE Conference on Decision and Control.

[25]  Wlodzimierz Greblicki,et al.  Nonparametric identification of Wiener systems , 1992, IEEE Trans. Inf. Theory.

[26]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[27]  L. Ljung,et al.  Maximum likelihood identification of Wiener models with a linear regression initialization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[28]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[29]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[30]  Er-Wei Bai Frequency domain identification of Wiener models , 2003, Autom..

[31]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[32]  Dennis S. Bernstein,et al.  Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities , 2003 .

[33]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[34]  Jozef Vörös,et al.  Recursive Identification of Systems with Noninvertible Output Nonlinearities , 2010, Informatica.

[35]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[36]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[37]  Antonio Vicino,et al.  Conditionally optimal algorithms and estimation of reduced order models , 1988, J. Complex..

[38]  Johan Schoukens,et al.  Initial estimates of Wiener and Hammerstein systems using multisine excitation , 2001, IEEE Trans. Instrum. Meas..

[39]  R. Tempo,et al.  Optimality of central and projection algorithms for bounded uncertainty , 1986 .

[40]  Torbjörn Wigren,et al.  Output error convergence of adaptive filters with compensation for output nonlinearities , 1998, IEEE Trans. Autom. Control..

[41]  Er-Wei Bai A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[42]  Ian W. Hunter,et al.  Two Methods for Identifying Wiener Cascades Having Noninvertible Static Nonlinearities , 1999, Annals of Biomedical Engineering.

[43]  Dario Piga,et al.  Set-Membership Error-in-Variables Identification Through Convex Relaxation Techniques , 2012, IEEE Transactions on Automatic Control.

[44]  Andrea Garulli,et al.  Tight error bounds for projection algorithms in conditional set membership estimation , 1999 .

[45]  Dario Piga,et al.  Bounding the parameters of block‐structured nonlinear feedback systems , 2013 .

[46]  E. Bai,et al.  Block Oriented Nonlinear System Identification , 2010 .

[47]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[48]  Graziano Chesi,et al.  Solving quadratic distance problems: an LMI-based approach , 2003, IEEE Trans. Autom. Control..

[49]  Ronald K. Pearson,et al.  Block-sequential algorithms for set-theoretic estimation , 1988 .

[50]  Lennart Ljung,et al.  Some Aspects on Nonlinear System Identification , 2006 .

[51]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[52]  Jiawang Nie,et al.  Optimality conditions and finite convergence of Lasserre’s hierarchy , 2012, Math. Program..

[53]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[54]  Fouad Giri,et al.  Introduction to Block-oriented Nonlinear Systems , 2010 .