A Review of Tunable Orbital Angular Momentum Modes in Fiber: Principle and Generation

Orbital angular momentum (OAM) beams, a new fundamental degree of freedom, have excited a great diversity of interest due to a variety of emerging applications. The scalability of OAM has always been a topic of discussion because it plays an important role in many applications, such as expanding to large capacity and adjusting the trapped particle rotation speed. Thus, the generation of arbitrary tunable OAM mode has been paid increasing attention. In this paper, the basic concepts of classical OAM modes are introduced firstly. Then, the tunable OAM modes are categorized into three types according to the orbital angular momentums and polarization states of mode carrying. In order to understand the OAM evolution of a mode intuitively, three kinds of Poincaré spheres (PSs) are introduced to represent the three kinds of tunable OAM modes. Numerous methods generating tunable OAM modes can be roughly divided into two types: spatial and fiber-based generation methods. The principles of fiber-based generation methods are interpreted by introducing two mode bases (linearly-polarized modes and vector modes) of the fiber. Finally, the strengths and weaknesses of each generation method are pointed out and the key challenges for tunable OAM modes are discussed.

[1]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  M J Padgett,et al.  Poincaré-sphere equivalent for light beams containing orbital angular momentum. , 1999, Optics letters.

[3]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[4]  Christian Schmitz,et al.  High-precision steering of multiple holographic optical traps. , 2005, Optics express.

[5]  R. W. Boyd,et al.  Q-plates as higher order polarization controllers for orbital angular momentum modes of fiber. , 2015, Optics letters.

[6]  Andrew Forbes,et al.  Controlled generation of higher-order Poincaré sphere beams from a laser , 2015, Nature Photonics.

[7]  Y. Kozawa,et al.  Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. , 2010, Optics express.

[8]  Shuangchun Wen,et al.  Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. , 2014, Optics letters.

[9]  Jian Wang,et al.  Controllable all-fiber orbital angular momentum mode converter. , 2015, Optics letters.

[10]  Jonathan Ko,et al.  Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications. , 2018, Applied optics.

[11]  Alexander Jesacher,et al.  Tailoring of arbitrary optical vector beams , 2007 .

[12]  Xiaoqian Wang,et al.  Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device. , 2019, Optics express.

[13]  Miles J. Padgett,et al.  Light with a twist in its tail , 2000 .

[14]  Ebrahim Karimi,et al.  Q-plate enabled spectrally diverse orbital-angular- momentum conversion for stimulated emission depletion microscopy , 2015 .

[15]  Shuangchun Wen,et al.  Realization of polarization evolution on higher-order Poincaré sphere with metasurface , 2014, 1407.1997.

[16]  J. Spatz,et al.  Tuning the orbital angular momentum in optical vortex beams. , 2006, Optics express.

[17]  Shuisheng Jian,et al.  Tunable Orbital Angular Momentum Generation Using All-Fiber Fused Coupler , 2018, IEEE Photonics Technology Letters.

[18]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[19]  Wei Jian,et al.  Two-dimensional tunable orbital angular momentum generation using a vortex fiber. , 2017, Optics letters.

[20]  Alexander Jesacher,et al.  Quantitative imaging of complex samples by spiral phase contrast microscopy. , 2006, Optics express.

[21]  Sicong Wang,et al.  Minimized spot of annular radially polarized focusing beam. , 2013, Optics letters.

[22]  Stephen M. Barnett,et al.  Entanglement of arbitrary superpositions of modes within two-dimensional orbital angular momentum state spaces , 2010 .

[23]  Ebrahim Karimi,et al.  Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications , 2011 .

[24]  Young Kie Kim,et al.  Broadband mode division multiplexer using all-fiber mode selective couplers. , 2016, Optics express.

[25]  Dongmei Deng,et al.  Analytical vectorial structure of radially polarized light beams. , 2007, Optics letters.

[26]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[27]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[28]  Wei Jian,et al.  Tunable Orbital Angular Momentum Generation Based on Two Orthogonal LP Modes in Optical Fibers , 2017, IEEE Photonics Technology Letters.

[29]  D. Fan,et al.  Hybrid-order Poincare sphere , 2014, 1411.2476.

[30]  Alexander Jesacher,et al.  Spiral phase contrast imaging in microscopy. , 2005, Optics express.

[31]  Shuisheng Jian,et al.  Tunable orbital angular momentum generation in optical fibers. , 2016, Optics letters.

[32]  Wei Li,et al.  Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator , 2016, IEEE Photonics Journal.

[33]  Miles J. Padgett,et al.  Optical Tweezers And Spanners , 1997 .

[34]  Nicholas M. Elias Photon orbital angular momentum in astronomy , 2008 .

[35]  Siddharth Ramachandran,et al.  Optical vortices in fiber , 2013 .

[36]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[37]  N. Zhang,et al.  Dielectric-Grating-Coupled Surface Plasmon Resonance From the Back Side of the Metal Film for Ultrasensitive Sensing , 2016, IEEE Photonics Journal.

[38]  R. Thomson,et al.  The photonic lantern , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[39]  Jian Wang,et al.  Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. , 2013, Optics letters.

[40]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[41]  Rokas Drevinskas,et al.  Single beam optical vortex tweezers with tunable orbital angular momentum , 2014 .

[42]  Qiwen Zhan,et al.  Vectorial optical field generator for the creation of arbitrarily complex fields. , 2013, Optics express.

[43]  Zhiyuan Li,et al.  Optical trapping of gold nanoparticles by cylindrical vector beam. , 2012, Optics letters.

[44]  Gerd Leuchs,et al.  Classical and quantum properties of cylindrically polarized states of light. , 2010, Optics express.

[45]  Cheng-Wei Qiu,et al.  Engineering light-matter interaction for emerging optical manipulation applications , 2014 .

[46]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[47]  Q. Zhan Cylindrical vector beams: from mathematical concepts to applications , 2009 .

[48]  D. Grier A revolution in optical manipulation , 2003, Nature.

[49]  J. Gopinath,et al.  Continuously tunable orbital angular momentum generation using a polarization-maintaining fiber. , 2016, Optics letters.

[50]  Santosh Tripathi,et al.  Versatile generation of optical vector fields and vector beams using a non-interferometric approach. , 2012, Optics express.

[51]  Tomáš Čižmár,et al.  Interference-free superposition of nonzero order light modes: Functionalized optical landscapes , 2011 .

[52]  Kimani C. Toussaint,et al.  Optical trapping efficiencies from n-phase cylindrical vector beams , 2011, OPTO.

[53]  Gabriel Molina-Terriza,et al.  Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. , 2002, Physical review letters.

[54]  Roland Ryf,et al.  Broadband and low-loss mode scramblers using CO2-laser inscribed long-period gratings. , 2018, Optics letters.

[55]  Jeffrey A. Davis,et al.  Complete polarization control of light from a liquid crystal spatial light modulator. , 2012, Optics express.

[56]  Shuangchun Wen,et al.  Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere , 2017 .

[57]  Wei Li,et al.  Continuously tunable orbital angular momentum generation controlled by input linear polarization. , 2018, Optics letters.

[58]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[59]  Siddharth Ramachandran,et al.  Control of orbital angular momentum of light with optical fibers. , 2012, Optics letters.

[60]  D. Nolan,et al.  Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light. , 2011, Physical review letters.

[61]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[62]  Jian Wang,et al.  Twisted optical communications using orbital angular momentum , 2018, Science China Physics, Mechanics & Astronomy.

[63]  David G Grier,et al.  Modulated optical vortices. , 2003, Optics letters.

[64]  J. Gopinath,et al.  Simultaneous control of orbital angular momentum and beam profile in two-mode polarization-maintaining fiber. , 2016, Optics letters.

[65]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[66]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[67]  V. Niziev,et al.  Laser beams with axially symmetric polarization , 2000 .