Erratum to: Entanglement Transmission and Generation under Channel Uncertainty: Universal Quantum Channel Coding

We determine the optimal rates of universal quantum codes for entanglement transmission and generation under channel uncertainty. In the simplest scenario the sender and receiver are provided merely with the information that the channel they use belongs to a given set of channels, so that they are forced to use quantum codes that are reliable for the whole set of channels. This is precisely the quantum analog of the compound channel coding problem. We determine the entanglement transmission and entanglement-generating capacities of compound quantum channels and show that they are equal. Moreover, we investigate two variants of that basic scenario, namely the cases of informed decoder or informed encoder, and derive corresponding capacity results.

[1]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[2]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[3]  Michal Horodecki,et al.  A Decoupling Approach to the Quantum Capacity , 2007, Open Syst. Inf. Dyn..

[4]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[5]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[6]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[7]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[8]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[9]  Holger Boche,et al.  Classical Capacities of Averaged and Compound Quantum Channels , 2007, ArXiv.

[10]  M. Horodecki,et al.  Universal Quantum Information Compression , 1998, quant-ph/9805017.

[11]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[12]  M. Hayashi,et al.  Universal Coding for Classical-Quantum Channel , 2008, 0805.4092.

[13]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[14]  G. Pisier ASYMPTOTIC THEORY OF FINITE DIMENSIONAL NORMED SPACES (Lecture Notes in Mathematics 1200) , 1987 .

[15]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[16]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[18]  R. Klesse Approximate quantum error correction, random codes, and quantum channel capacity , 2007, quant-ph/0701102.

[19]  Benjamin Schumacher,et al.  Approximate Quantum Error Correction , 2002, Quantum Inf. Process..

[20]  Holger Boche,et al.  Classical Capacities of Compound and Averaged Quantum Channels , 2007, IEEE Transactions on Information Theory.

[21]  M. Ruskai,et al.  The structure of degradable quantum channels , 2008, 0802.1360.

[22]  N. Datta,et al.  The coding theorem for a class of quantum channels with long-term memory , 2006, quant-ph/0610049.

[23]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[24]  D. Leung,et al.  Continuity of Quantum Channel Capacities , 2008, 0810.4931.

[25]  Jacob Wolfowitz Coding Theorems of Information Theory , 1962 .

[26]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[27]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[28]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[29]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[30]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[31]  Holger Boche,et al.  On Quantum Capacity of Compound Channels , 2008, ArXiv.

[32]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[33]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[35]  Andreas J. Winter,et al.  Random quantum codes from Gaussian ensembles and an uncertainty relation , 2007, Open Syst. Inf. Dyn..

[36]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.