Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS

Abstract Satellite derived surface albedo and view-angle corrected surface reflectance products serve as the key inputs for an array of climate, biogeochemical, and hydrologic modeling efforts. This research effort is particularly focused on establishing the effective spatial resolution of the global MODIS and VIIRS Nadir BRDF-Adjusted Reflectance (NBAR) and Albedo products. The standard MODIS Products (MCD43) are created by fitting a kernel-driven, semi-empirical BRDF model to multi-date, multi-angular surface reflectance data to establish the surface reflectance anisotropy of a location. Emphasis on a particular date within the rolling multi-date period has resulted in a daily product reported on a 500 m Sinusoidal grid tiling system. While anecdotal and theoretical experiences have suggested that this product would be representative of a larger surface area than the 500 m grid, this research both quantifies that effect, and verifies that the spatial effective resolution is consistently less than 1 km for MODIS. Results for 500 m VIIRS NBAR product show an improvement of approximately 250 m in spatial effective resolution along the scan direction. In addition to their use in modeling, the MODIS BRDF/Albedo/NBAR products (and into the future with the analogous VIIRS products) are increasingly being relied upon to monitor vegetation phenology, identify land cover and land cover disturbance, track snow fall and melt, and establish surface energy balance variability. Thus, this research provides the quantification both for MODIS and VIIRS necessary for the effective use of these products by the global modeling and monitoring communities.

[1]  C. Justice,et al.  Land and cryosphere products from Suomi NPP VIIRS: Overview and status , 2013, Journal of geophysical research. Atmospheres : JGR.

[2]  K. Davis,et al.  The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes , 2009 .

[3]  Crystal B. Schaaf,et al.  Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data , 2005 .

[4]  Eric F. Vermote,et al.  MODIS Directional Surface Reflectance Product: Method, Error Estimates and Validation , 2010 .

[5]  K. Oleson,et al.  Assessment of global climate model land surface albedo using MODIS data , 2003 .

[6]  Zhuosen Wang,et al.  Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-Based Estimates of Directional Reflectance and Albedo , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[7]  R. Wrigley,et al.  Landsat Thematic Mapper image-derived MTF , 1985 .

[8]  F. Gao,et al.  An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF , 2011 .

[9]  R. Dickinson,et al.  Comparison of seasonal and spatial variations of albedos from Moderate-Resolution Imaging Spectroradiometer (MODIS) and Common Land Model , 2003 .

[10]  W. Paul Menzel,et al.  Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Ranga B. Myneni,et al.  The impact of gridding artifacts on the local spatial properties of MODIS data : Implications for validation, compositing, and band-to-band registration across resolutions , 2006 .

[12]  Eleanor C. Stokes,et al.  Holidays in lights: Tracking cultural patterns in demand for energy services , 2015, Earth's future.

[13]  Jean-Louis Roujean,et al.  Comparing Operational MSG/SEVIRI Land Surface Albedo Products From Land SAF With Ground Measurements and MODIS , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[14]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[15]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[16]  Wolfgang Lucht,et al.  Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling , 2000 .

[17]  Jerry Y. Pan,et al.  Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network , 2012 .

[18]  Christopher O. Justice,et al.  Land Remote Sensing and Global Environmental Change , 2011 .

[19]  Feng Gao,et al.  Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products , 2014 .

[20]  Jie Guang,et al.  Satellite aerosol retrieval using dark target algorithm by coupling BRDF effect over AERONET site , 2012, Asia-Pacific Environmental Remote Sensing.

[21]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[22]  David P. Roy,et al.  MODIS land data storage, gridding, and compositing methodology: Level 2 grid , 1998, IEEE Trans. Geosci. Remote. Sens..

[23]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[24]  Peter R. J. North,et al.  The ESA GlobAlbedo Project for mapping the Earth's land surface albedo for 15 Years from European Sensors. , 2012, IGARSS 2012.

[25]  Alan H. Strahler,et al.  Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products , 2010 .

[26]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[27]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .

[28]  F. J. A. López,et al.  Restoring SPOT images using PSF-derived deconvolution filters , 2002 .

[29]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[30]  Christopher O. Justice,et al.  Early evaluation of the VIIRS calibration, cloud mask and surface reflectance Earth data records , 2014 .

[31]  Michael J. Barnsley,et al.  Global retrieval of bidirectional reflectance and albedo over land , 1997 .

[32]  Donghui Xie,et al.  Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics , 2013 .

[33]  J. Morcrette,et al.  Impact of a New Radiation Package, McRad, in the ECMWF Integrated Forecasting System , 2008 .

[34]  C. Woodcock,et al.  Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra , 2012 .

[35]  E. Honkavaara,et al.  Targets, methods, and sites for assessing the in-flight spatial resolution of electro-optical data products , 2010 .

[36]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. , 2007, Applied optics.

[37]  C. Woodcock,et al.  The factor of scale in remote sensing , 1987 .

[38]  Robert E. Wolfe,et al.  MODIS level 2 grid with the ISIN map projection , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[39]  Douglas A. Wiens,et al.  Tilt recorded by a portable broadband seismograph: The 2003 eruption of Anatahan Volcano, Mariana Islands , 2005 .

[40]  Dana H. Brooks,et al.  Electrical imaging of the heart , 1997, IEEE Signal Process. Mag..

[41]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[42]  Aggelos K. Katsaggelos,et al.  Digital image restoration , 2012, IEEE Signal Process. Mag..

[43]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[44]  Christopher D Claxton,et al.  Measurement of the point-spread function of a noisy imaging system. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  E. Vermote,et al.  Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. , 2006, Applied optics.

[46]  Brian Wenny,et al.  Pre- and Post-Launch Spatial Quality of the Landsat 8 Thermal Infrared Sensor , 2015, Remote. Sens..

[47]  Richard Siddans,et al.  Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions , 2012 .

[48]  Mark A. Friedl,et al.  Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements , 2006 .

[49]  Robert E. Wolfe,et al.  Suomi NPP VIIRS prelaunch and on‐orbit geometric calibration and characterization , 2013 .

[50]  F. Gao,et al.  An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge , 2014 .

[51]  Manuel L. Campagnolo,et al.  Estimation of Effective Resolution for Daily MODIS Gridded Surface Reflectance Products , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[52]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[53]  M. Friedl,et al.  Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product , 2010 .

[54]  Alan H. Strahler,et al.  Modeling bidirectional reflectance of forests and woodlands using boolean models and geometric optics , 1990 .

[55]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[56]  A. Nolin,et al.  Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR , 2011 .

[57]  Xiaowen Li,et al.  An Anisotropic Flat Index (AFX) to derive BRDF archetypes from MODIS , 2014 .

[58]  T. Chase,et al.  Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0) , 2007 .

[59]  C. Woodcock,et al.  Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods , 2014 .

[60]  C. Schaaf,et al.  Relationship of MISR RPV parameters and MODIS BRDF shape indicators to surface vegetation patterns in an Australian tropical savanna , 2008 .