Borel structurability on the 2-shift of a countable group
暂无分享,去创建一个
[1] S. Thomas. Universal Borel actions of countable groups , 2012 .
[2] Wolfgang Krieger,et al. On entropy and generators of measure-preserving transformations , 1970 .
[3] Alain Louveau,et al. Countable Borel Equivalence Relations , 2002, J. Math. Log..
[4] A. Kechris,et al. Structurable equivalence relations , 2016, 1606.01995.
[5] Stevo Todorcevic,et al. BOREL CHROMATIC NUMBERS , 1999 .
[6] Benjamin Weiss,et al. Ergodic theory of amenable group actions. I: The Rohlin lemma , 1980 .
[7] A. Tserunyan. Finite generators for countable group actions in the Borel and Baire category settings , 2012, 1204.0829.
[8] A. I. Danilenko. Generators and Bernoullian factors for amenable actions and cocycles on their orbits , 2002, Ergodic Theory and Dynamical Systems.
[9] B. Weiss,et al. Entropy and mixing for amenable group actions. , 2000, math/0005304.
[10] Simon Thomas,et al. Martin’s conjecture and strong ergodicity , 2009, Arch. Math. Log..
[11] Andrew S. Marks. A determinacy approach to Borel combinatorics , 2013, 1304.3830.
[12] Su Gao,et al. Group Colorings and Bernoulli Subflows , 2012, 1201.0513.