Fast and Backward Stable Computation of Roots of Polynomials

A stable algorithm to compute the roots of polynomials is presented. The roots are found by computing the eigenvalues of the associated companion matrix by Francis's implicitly shifted QR algorithm. A companion matrix is an upper Hessenberg matrix that is unitary-plus-rank-one, that is, it is the sum of a unitary matrix and a rank-one matrix. These properties are preserved by iterations of Francis's algorithm, and it is these properties that are exploited here. The matrix is represented as a product of 3n-1 Givens rotators plus the rank-one part, so only $O(n)$ storage space is required. In fact, the information about the rank-one part is also encoded in the rotators, so it is not necessary to store the rank-one part explicitly. Francis's algorithm implemented on this representation requires only O(n) flops per iteration and thus $O(n^{2})$ flops overall. The algorithm is described, normwise backward stability is proved, and an extensive set of numerical experiments is presented. The algorithm is shown to...

[1]  Raf Vandebril,et al.  An Implicit Multishift $QR$-Algorithm for Hermitian Plus Low Rank Matrices , 2010 .

[2]  Raf Vandebril,et al.  Fast computation of eigenvalues of companion, comrade, and related matrices , 2014 .

[3]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[4]  Gianna M. Del Corso,et al.  A CMV-Based Eigensolver for Companion Matrices , 2015, SIAM J. Matrix Anal. Appl..

[5]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[6]  Dario Bini,et al.  A Fast Implicit QR Eigenvalue Algorithm for Companion Matrices , 2010 .

[7]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[8]  I. Gohberg,et al.  Fast QR Eigenvalue Algorithms for Hessenberg Matrices Which Are Rank-One Perturbations of Unitary Matrices , 2007, SIAM J. Matrix Anal. Appl..

[9]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[10]  A. Edelman,et al.  Polynomial roots from companion matrix eigenvalues , 1995 .

[11]  Paul Van Dooren,et al.  Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.

[12]  Jianlin Xia,et al.  A Fast QR Algorithm for Companion Matrices , 2007 .

[13]  Beatrice Meini,et al.  Effective Fast Algorithms for Polynomial Spectral Factorization , 2003, Numerical Algorithms.

[14]  Jim Euchner Design , 2014, Catalysis from A to Z.

[15]  F. Terán,et al.  Low rank perturbation of regular matrix polynomials , 2009 .

[16]  Yuli Eidelman,et al.  Implicit QR for rank-structured matrix pencils , 2014 .

[17]  Joseph F. Traub,et al.  Principles for Testing Polynomial Zerofinding Programs , 1975, TOMS.

[18]  Israel Gohberg,et al.  Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations , 2008, Numerical Algorithms.

[19]  I. Gohberg,et al.  Implicit QR with Compression , 2012 .

[20]  David S. Watkins,et al.  Francis's Algorithm , 2011, Am. Math. Mon..

[21]  Raf Vandebril,et al.  On Deflations in Extended QR Algorithms , 2014, SIAM J. Matrix Anal. Appl..

[22]  Albrecht Böttcher,et al.  Wiener–Hopf and spectral factorization of real polynomials by Newton’s method , 2013 .

[23]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[24]  Marc Van Barel,et al.  An algorithm for computing the eigenvalues of block companion matrices , 2012, Numerical Algorithms.

[25]  David S. Watkins,et al.  The matrix eigenvalue problem - GR and Krylov subspace methods , 2007 .

[26]  J. G. F. Francis,et al.  The QR Transformation - Part 2 , 1962, Comput. J..

[27]  P. ZHLOBICH Differential qd Algorithm with Shifts for Rank-Structured Matrices , 2012, SIAM J. Matrix Anal. Appl..

[28]  J. G. F. Francis,et al.  The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..

[29]  Dario Bini,et al.  ON THE SHIFTED QR ITERATION APPLIED TO COMPANION MATRICES , 2004 .

[30]  Giuseppe Fiorentino,et al.  Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.

[31]  Dario Bini,et al.  Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.

[32]  Raf Vandebril,et al.  Fast Computation of the Zeros of a Polynomial via Factorization of the Companion Matrix , 2013, SIAM J. Sci. Comput..

[33]  Tuncay Aktosun,et al.  The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation , 2011, 1106.2843.

[34]  Israel Gohberg,et al.  Separable Type Representations of Matrices and Fast Algorithms , 2013 .