Fast and Backward Stable Computation of Roots of Polynomials
暂无分享,去创建一个
Raf Vandebril | Thomas Mach | David S. Watkins | Jared L. Aurentz | D. S. Watkins | R. Vandebril | T. Mach
[1] Raf Vandebril,et al. An Implicit Multishift $QR$-Algorithm for Hermitian Plus Low Rank Matrices , 2010 .
[2] Raf Vandebril,et al. Fast computation of eigenvalues of companion, comrade, and related matrices , 2014 .
[3] L. Trefethen,et al. Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .
[4] Gianna M. Del Corso,et al. A CMV-Based Eigensolver for Companion Matrices , 2015, SIAM J. Matrix Anal. Appl..
[5] P. Dooren,et al. The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .
[6] Dario Bini,et al. A Fast Implicit QR Eigenvalue Algorithm for Companion Matrices , 2010 .
[7] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[8] I. Gohberg,et al. Fast QR Eigenvalue Algorithms for Hessenberg Matrices Which Are Rank-One Perturbations of Unitary Matrices , 2007, SIAM J. Matrix Anal. Appl..
[9] David S. Watkins,et al. Fundamentals of matrix computations , 1991 .
[10] A. Edelman,et al. Polynomial roots from companion matrix eigenvalues , 1995 .
[11] Paul Van Dooren,et al. Implicit double shift QR-algorithm for companion matrices , 2010, Numerische Mathematik.
[12] Jianlin Xia,et al. A Fast QR Algorithm for Companion Matrices , 2007 .
[13] Beatrice Meini,et al. Effective Fast Algorithms for Polynomial Spectral Factorization , 2003, Numerical Algorithms.
[14] Jim Euchner. Design , 2014, Catalysis from A to Z.
[15] F. Terán,et al. Low rank perturbation of regular matrix polynomials , 2009 .
[16] Yuli Eidelman,et al. Implicit QR for rank-structured matrix pencils , 2014 .
[17] Joseph F. Traub,et al. Principles for Testing Polynomial Zerofinding Programs , 1975, TOMS.
[18] Israel Gohberg,et al. Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations , 2008, Numerical Algorithms.
[19] I. Gohberg,et al. Implicit QR with Compression , 2012 .
[20] David S. Watkins,et al. Francis's Algorithm , 2011, Am. Math. Mon..
[21] Raf Vandebril,et al. On Deflations in Extended QR Algorithms , 2014, SIAM J. Matrix Anal. Appl..
[22] Albrecht Böttcher,et al. Wiener–Hopf and spectral factorization of real polynomials by Newton’s method , 2013 .
[23] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[24] Marc Van Barel,et al. An algorithm for computing the eigenvalues of block companion matrices , 2012, Numerical Algorithms.
[25] David S. Watkins,et al. The matrix eigenvalue problem - GR and Krylov subspace methods , 2007 .
[26] J. G. F. Francis,et al. The QR Transformation - Part 2 , 1962, Comput. J..
[27] P. ZHLOBICH. Differential qd Algorithm with Shifts for Rank-Structured Matrices , 2012, SIAM J. Matrix Anal. Appl..
[28] J. G. F. Francis,et al. The QR Transformation A Unitary Analogue to the LR Transformation - Part 1 , 1961, Comput. J..
[29] Dario Bini,et al. ON THE SHIFTED QR ITERATION APPLIED TO COMPANION MATRICES , 2004 .
[30] Giuseppe Fiorentino,et al. Design, analysis, and implementation of a multiprecision polynomial rootfinder , 2000, Numerical Algorithms.
[31] Dario Bini,et al. Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.
[32] Raf Vandebril,et al. Fast Computation of the Zeros of a Polynomial via Factorization of the Companion Matrix , 2013, SIAM J. Sci. Comput..
[33] Tuncay Aktosun,et al. The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation , 2011, 1106.2843.
[34] Israel Gohberg,et al. Separable Type Representations of Matrices and Fast Algorithms , 2013 .