Similarity of polygonal curves in the presence of outliers
暂无分享,去创建一个
Jörg-Rüdiger Sack | Jean-Lou De Carufel | Christian Scheffer | Anil Maheshwari | Amin Gheibi | A. Maheshwari | Amin Gheibi | J. Carufel | Christian Scheffer | Jörg-Rüdiger Sack
[1] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[2] Jean-Lou De Carufel,et al. Unsolvability of the Weighted Region Shortest Path Problem I , 2012 .
[3] Mark H. Overmars,et al. The Complexity of the Free Space for a Robot Moving Amidst Fat Obstacles , 1992, Comput. Geom..
[4] D. T. Lee,et al. Shortest rectilinear paths among weighted obstacles , 1990, SCG '90.
[5] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[6] Maarten Löffler,et al. Median Trajectories , 2010, Algorithmica.
[7] Sariel Har-Peled,et al. Partial Curve Matching under the Fréchet Distance∗ , 2006 .
[8] Jörg-Rüdiger Sack,et al. Algorithms for Approximate Shortest Path Queries on Weighted Polyhedral Surfaces , 2010, Discret. Comput. Geom..
[9] Mark de Berg. Better bounds on the union complexity of locally fat objects , 2010, SoCG '10.
[10] Sariel Har-Peled,et al. Jaywalking your dog: computing the Fréchet distance with shortcuts , 2011, SODA 2012.
[11] Kaveh Shahbaz,et al. Applied Similarity Problems Using Frechet Distance , 2013, ArXiv.
[12] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[13] Joachim Gudmundsson,et al. Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..
[14] Michiel H. M. Smid,et al. A note on the unsolvability of the weighted region shortest path problem , 2013, Comput. Geom..
[15] Marc J. van Kreveld,et al. Median trajectories using well-visited regions and shortest paths , 2011, GIS.
[16] Chandrajit L. Bajaj,et al. The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..
[17] Kevin Buchin,et al. Exact algorithms for partial curve matching via the Fréchet distance , 2009, SODA.
[18] Bettina Speckmann,et al. Computing the Fréchet distance with shortcuts is NP-hard , 2014, Symposium on Computational Geometry.