Posterior Odds with a Generalized Hyper-g-Prior

Averaged orthogonal rotations of Zellner's g-prior yield general, interpretable, closed form Bayes factors for the normal linear model variable selection problem. Coupled with a model space prior that balances the weight between the identifiable and the unidentifiable models, limiting forms for the posterior odds ratios are seen to yield new expressions for high dimensional model choice.

[1]  Keming Yu,et al.  Bayesian Mode Regression , 2012, 1208.0579.

[2]  Edward I. George,et al.  Empirical Bayes vs. Fully Bayes Variable Selection , 2008 .

[3]  M. Clyde,et al.  Mixtures of g Priors for Bayesian Variable Selection , 2008 .

[4]  Yuzo Maruyama,et al.  Fully Bayes factors with a generalized g-prior , 2008, 0801.4410.

[5]  Yuzo Maruyama,et al.  A new class of generalized Bayes minimax ridge regression estimators , 2004, math/0508282.

[6]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[7]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[8]  J. Berger A Robust Generalized Bayes Estimator and Confidence Region for a Multivariate Normal Mean , 1980 .

[9]  A. Zellner,et al.  Posterior odds ratios for selected regression hypotheses , 1980 .

[10]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[11]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[12]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[13]  J. Muth Rational Expectations and the Theory of Price Movements , 1961 .

[14]  L. Pericchi,et al.  BAYES FACTORS AND MARGINAL DISTRIBUTIONS IN INVARIANT SITUATIONS , 2016 .

[15]  Arnold Zellner,et al.  The Structural Econometric Time Series Analysis Approach: Author index , 2004 .

[16]  A. Maravall,et al.  The Structural Econometric Time Series Analysis Approach: Encompassing univariate models in multivariate time series: a case study (1994) , 2004 .