Posterior Odds with a Generalized Hyper-g-Prior
暂无分享,去创建一个
[1] Keming Yu,et al. Bayesian Mode Regression , 2012, 1208.0579.
[2] Edward I. George,et al. Empirical Bayes vs. Fully Bayes Variable Selection , 2008 .
[3] M. Clyde,et al. Mixtures of g Priors for Bayesian Variable Selection , 2008 .
[4] Yuzo Maruyama,et al. Fully Bayes factors with a generalized g-prior , 2008, 0801.4410.
[5] Yuzo Maruyama,et al. A new class of generalized Bayes minimax ridge regression estimators , 2004, math/0508282.
[6] D. Madigan,et al. Bayesian Model Averaging for Linear Regression Models , 1997 .
[7] J. Berger. Statistical Decision Theory and Bayesian Analysis , 1988 .
[8] J. Berger. A Robust Generalized Bayes Estimator and Confidence Region for a Multivariate Normal Mean , 1980 .
[9] A. Zellner,et al. Posterior odds ratios for selected regression hypotheses , 1980 .
[10] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[11] A. Zellner. An Introduction to Bayesian Inference in Econometrics , 1971 .
[12] W. Strawderman. Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .
[13] J. Muth. Rational Expectations and the Theory of Price Movements , 1961 .
[14] L. Pericchi,et al. BAYES FACTORS AND MARGINAL DISTRIBUTIONS IN INVARIANT SITUATIONS , 2016 .
[15] Arnold Zellner,et al. The Structural Econometric Time Series Analysis Approach: Author index , 2004 .
[16] A. Maravall,et al. The Structural Econometric Time Series Analysis Approach: Encompassing univariate models in multivariate time series: a case study (1994) , 2004 .