Hybrid evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers

Abstract In this paper, we present an evolutionary algorithm hybridized with a gradient-based optimization technique in the spirit of Lamarckian learning for efficient design optimization. In order to expedite gradient search, we employ local surrogate models that approximate the outputs of a computationally expensive Euler solver. Our focus is on the case when an adjoint Euler solver is available for efficiently computing the sensitivities of the outputs with respect to the design variables. We propose the idea of using Hermite interpolation to construct gradient-enhanced radial basis function networks that incorporate sensitivity data provided by the adjoint Euler solver. Further, we conduct local search using a trust-region framework that interleaves gradient-enhanced surrogate models with the computationally expensive adjoint Euler solver. This ensures that the present hybrid evolutionary algorithm inherits the convergence properties of the classical trust-region approach. We present numerical results for airfoil aerodynamic design optimization problems to show that the proposed algorithm converges to good designs on a limited computational budget.

[1]  Andy J. Keane,et al.  Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[2]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[3]  Ren-Jye Yang,et al.  Approximation methods in multidisciplinary analysis and optimization: a panel discussion , 2004 .

[4]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[5]  Andy J. Keane,et al.  Computational Approaches for Aerospace Design: The Pursuit of Excellence , 2005 .

[6]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[7]  T. Simpson,et al.  Comparative studies of metamodelling techniques under multiple modelling criteria , 2001 .

[8]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[9]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[10]  吴宗敏 HERMITE—BIRKHOFF INTERPOLATION OF SCATTERED DATA BY RADIAL BASIS FUNCTIONS , 1992 .

[11]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[12]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[13]  Craig T. Lawrence,et al.  A Computationally Efficient Feasible Sequential Quadratic Programming Algorithm , 2000, SIAM J. Optim..

[14]  Kok Wai Wong,et al.  Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems , 2005 .

[15]  Antony Jameson,et al.  Control theory based airfoil design using the Euler equations , 1994 .

[16]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[17]  Kai-Yew Lum,et al.  Max-min surrogate-assisted evolutionary algorithm for robust design , 2006, IEEE Transactions on Evolutionary Computation.

[18]  John E. Dennis,et al.  A framework for managing models in nonlinear optimization of computationally expensive functions , 1999 .

[19]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[20]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[21]  X. Yao Evolutionary Search of Approximated N-dimensional Landscapes , 2000 .

[22]  Andy J. Keane,et al.  A Study of Shape Parameterisation Methods for Airfoil Optimisation , 2004 .

[23]  Bu-Sung Lee,et al.  A Multi-cluster Grid Enabled Evolution Framework for Aerodynamic Airfoil Design Optimization , 2005, ICNC.

[24]  Yaochu Jin,et al.  Knowledge incorporation in evolutionary computation , 2005 .

[25]  Raymond M. Hicks,et al.  Wing design by numerical optimization , 1977 .

[26]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[27]  M. J. Rimlinger,et al.  Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers , 1997 .

[28]  Ian T. Foster,et al.  The Anatomy of the Grid: Enabling Scalable Virtual Organizations , 2001, Int. J. High Perform. Comput. Appl..

[29]  Oktay Baysal,et al.  Three-dimensional aerodynamic shape optimization of wings using sensitivity analysis , 1994 .

[30]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[31]  Antony Jameson,et al.  Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact , 2001 .

[32]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[33]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[34]  Wentong Cai,et al.  "Gridifying" Aerodynamic Design Problem Using GridRPC , 2003, GCC.

[35]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[36]  Niles A. Pierce,et al.  An Introduction to the Adjoint Approach to Design , 2000 .

[37]  F. J. Narcowich,et al.  Generalized Hermite interpolation via matrix-valued conditionally positive definite functions , 1994 .

[38]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[39]  Gregory E. Fasshauer,et al.  Hermite interpolation with radial basis functions on spheres , 1999, Adv. Comput. Math..

[40]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[41]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[42]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[43]  Oktay Baysal,et al.  Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis , 1996 .