An algorithm for computing exponential solutions of first order linear differential systems

This article deals with the computation of exponential solutions of first order linear differential systems with rational function coefficients. We develop an algorithm working dlrectly at the system in contrast to the standard approach of cyclic vectors which transforms the system in an equivalent nt h order scalar linear differential equation. We have implemented our method in the computer algebra system MAPLE V, and it turns out that it is in general more efficient than the cyclic vector approach.

[1]  M. V. Hoeij,et al.  Factorization of linear differential operators , 1996 .

[2]  Manuel Bronstein,et al.  An improved algorithm for factoring linear ordinary differential operators , 1994, ISSAC '94.

[3]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[4]  Moulay A. Barkatou,et al.  A rational version of Moser's algorithm , 1995, ISSAC '95.

[5]  M. Singer Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations , 1981 .

[6]  Michael F. Singer,et al.  Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients , 1989, J. Symb. Comput..

[7]  A. H. M. Levelt,et al.  Invariants mesurant l'irrégularité en un point singulier des systèmes d'équations différentielles linéaires , 1972 .

[8]  Pamela B. Lawhead,et al.  Super-irreducible form of linear differential systems , 1986 .

[9]  Evelyne Tournier Solutions formelles d'équations différentielles‎ : le logiciel de calcul formel DESIR‎ : étude théorique et réalisation. (Differential equations formal solutions : scheme and realization of a software for a formal calculation system) , 1987 .

[10]  Manuel Bronstein,et al.  Linear ordinary differential equations: breaking through the order 2 barrier , 1992, ISSAC '92.

[11]  A. Hilali Calcul des invariants de Malgrange et de Gérard-Levelt d'un système différentiel linéaire en un point singulier irrégulier , 1987 .

[12]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[13]  Fritz Schwarz,et al.  A factorization algorithm for linear ordinary differential equations , 1989, ISSAC '89.

[14]  Manuel Bronstein On solutions of linear ordinary differential equations in their coefficient field , 1991 .