Approximation of stability radii for large-scale dissipative Hamiltonian systems

A linear time-invariant dissipative Hamiltonian (DH) system x ̇ = ( J − R ) Q x $\dot x = (J-R)Q x$ , with a skew-Hermitian J , a Hermitian positive semidefinite R , and a Hermitian positive definite Q , is always Lyapunov stable and under further weak conditions even asymptotically stable. By exploiting the characterizations from Mehl et al. (SIAM J. Matrix Anal. Appl. 37 (4), 1625–1654, 2016 ), we focus on the estimation of two stability radii for large-scale DH systems, one with respect to non-Hermitian perturbations of R in the form R + B Δ C H for given matrices B , C , and another with respect to Hermitian perturbations in the form R + B Δ B H ,Δ = Δ H . We propose subspace frameworks for both stability radii that converge at a superlinear rate in theory. The one for the non-Hermitian stability radius benefits from the DH structure-preserving model order reduction techniques, whereas for the Hermitian stability radius we derive subspaces yielding a Hermite interpolation property between the full and projected problems. With the proposed frameworks, we are able to estimate the two stability radii accurately and efficiently for large-scale systems which include a finite-element model of an industrial disk brake.

[1]  Tim Mitchell,et al.  Faster and More Accurate Computation of the ℋ∞ Norm via Optimization , 2017, SIAM J. Sci. Comput..

[2]  A. Akay Acoustics of friction. , 2002, The Journal of the Acoustical Society of America.

[3]  P. Lancaster On eigenvalues of matrices dependent on a parameter , 1964 .

[4]  Paul Van Dooren,et al.  Model Reduction of MIMO Systems via Tangential Interpolation , 2005, SIAM J. Matrix Anal. Appl..

[5]  C. Loan How Near is a Stable Matrix to an Unstable Matrix , 1984 .

[6]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[7]  Peter Benner,et al.  A structured pseudospectral method for $$\mathcal {H}_\infty $$H∞-norm computation of large-scale descriptor systems , 2013, Math. Control. Signals Syst..

[8]  Arjan van der Schaft,et al.  Interpolation-based ℌ2 model reduction for port-Hamiltonian systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[9]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[10]  Arjan van der Schaft,et al.  Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos , 2011, IEEE Transactions on Automatic Control.

[11]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[12]  Michael L. Overton,et al.  Fast Approximation of the HINFINITY Norm via Optimization over Spectral Value Sets , 2013, SIAM J. Matrix Anal. Appl..

[13]  Paul Van Dooren,et al.  Calculating the HINFINITY-norm Using the Implicit Determinant Method , 2014, SIAM J. Matrix Anal. Appl..

[14]  Franz Rellich,et al.  Perturbation Theory of Eigenvalue Problems , 1969 .

[15]  Emre Mengi,et al.  Numerical Optimization of Eigenvalues of Hermitian Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..

[16]  Arjan van der Schaft,et al.  Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..

[17]  Volker Mehrmann,et al.  Numerical methods for parametric model reduction in the simulation of disk brake squeal , 2016 .

[18]  Michael L. Overton,et al.  Hybrid expansion–contraction: a robust scaleable method for approximating the H∞ norm , 2016 .

[19]  Punit Sharma,et al.  Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations , 2016, SIAM J. Matrix Anal. Appl..

[20]  Tosio Kato Perturbation theory for linear operators , 1966 .

[21]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[22]  Volker Mehrmann,et al.  Computation of Stability Radii for Large-Scale Dissipative Hamiltonian Systems. , 2018, 1808.03574.

[23]  Peter Benner,et al.  LARGE-SCALE COMPUTATION OF L ∞ -NORMS BY A GREEDY SUBSPACE METHOD , 2017 .

[24]  P. Benner,et al.  A Subspace Framework for ${\mathcal H}_\infty$-Norm Minimization. , 2019 .