Approximation of stability radii for large-scale dissipative Hamiltonian systems
暂无分享,去创建一个
[1] Tim Mitchell,et al. Faster and More Accurate Computation of the ℋ∞ Norm via Optimization , 2017, SIAM J. Sci. Comput..
[2] A. Akay. Acoustics of friction. , 2002, The Journal of the Acoustical Society of America.
[3] P. Lancaster. On eigenvalues of matrices dependent on a parameter , 1964 .
[4] Paul Van Dooren,et al. Model Reduction of MIMO Systems via Tangential Interpolation , 2005, SIAM J. Matrix Anal. Appl..
[5] C. Loan. How Near is a Stable Matrix to an Unstable Matrix , 1984 .
[6] M. Steinbuch,et al. A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .
[7] Peter Benner,et al. A structured pseudospectral method for $$\mathcal {H}_\infty $$H∞-norm computation of large-scale descriptor systems , 2013, Math. Control. Signals Syst..
[8] Arjan van der Schaft,et al. Interpolation-based ℌ2 model reduction for port-Hamiltonian systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[9] Arjan van der Schaft,et al. Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..
[10] Arjan van der Schaft,et al. Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos , 2011, IEEE Transactions on Automatic Control.
[11] S. Boyd,et al. A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .
[12] Michael L. Overton,et al. Fast Approximation of the HINFINITY Norm via Optimization over Spectral Value Sets , 2013, SIAM J. Matrix Anal. Appl..
[13] Paul Van Dooren,et al. Calculating the HINFINITY-norm Using the Implicit Determinant Method , 2014, SIAM J. Matrix Anal. Appl..
[14] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[15] Emre Mengi,et al. Numerical Optimization of Eigenvalues of Hermitian Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..
[16] Arjan van der Schaft,et al. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems , 2011, Autom..
[17] Volker Mehrmann,et al. Numerical methods for parametric model reduction in the simulation of disk brake squeal , 2016 .
[18] Michael L. Overton,et al. Hybrid expansion–contraction: a robust scaleable method for approximating the H∞ norm , 2016 .
[19] Punit Sharma,et al. Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations , 2016, SIAM J. Matrix Anal. Appl..
[20] Tosio Kato. Perturbation theory for linear operators , 1966 .
[21] Stephen P. Boyd,et al. Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.
[22] Volker Mehrmann,et al. Computation of Stability Radii for Large-Scale Dissipative Hamiltonian Systems. , 2018, 1808.03574.
[23] Peter Benner,et al. LARGE-SCALE COMPUTATION OF L ∞ -NORMS BY A GREEDY SUBSPACE METHOD , 2017 .
[24] P. Benner,et al. A Subspace Framework for ${\mathcal H}_\infty$-Norm Minimization. , 2019 .