A finite strain, finite band method for modeling ductile fracture

Abstract We present a finite deformation generalization of the finite thickness embedded discontinuity formulation presented in our previous paper [A.E. Huespe, A. Needleman, J. Oliver, P.J. Sanchez, A finite thickness band method for ductile fracture analysis, Int. J. Plasticity 25 (2009) 2349–2365]. In this framework the transition from a weak discontinuity to a strong discontinuity can occur using a single constitutive relation which is of importance in a range of applications, in particular ductile fracture, where localization typically precedes the creation of new free surface. An embedded weak discontinuity is introduced when the loss of ellipticity condition is met. The resulting localized deformation band is given a specified thickness which introduces a length scale thus providing a regularization of the post-localization response. The methodology is illustrated through several example problems emphasizing finite deformation effects including the development of a cup-cone failure in round bar tension.

[1]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[2]  A. Needleman,et al.  Void Nucleation Effects in Biaxially Stretched Sheets , 1980 .

[3]  Huajian Gao,et al.  Strain gradient plasticity , 2001 .

[4]  R. Peerlings,et al.  Discrete crack modelling of ductile fracture driven by non‐local softening plasticity , 2006 .

[5]  E. Dvorkin,et al.  Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions , 1990 .

[6]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[7]  Rodney Hill,et al.  Aspects of Invariance in Solid Mechanics , 1979 .

[8]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .

[9]  Jacques Besson,et al.  Modeling of crack growth in round bars and plane strain specimens , 2001 .

[10]  A. Gurson Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction , 1988 .

[11]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[12]  A. Combescure,et al.  A cohesive zone model which is energetically equivalent to a gradient-enhanced coupled damage-plasticity model , 2010 .

[13]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[14]  L. J. Sluys,et al.  Non-homogeneous displacement jumps in strong embedded discontinuities , 2003 .

[15]  R. Becker,et al.  Effect of Yield Surface Curvature on Necking and Failure in Porous Plastic Solids , 1986 .

[16]  H. Yang,et al.  Ductile fracture: Experiments and computations , 2011 .

[17]  A. Huespe,et al.  A finite thickness band method for ductile fracture analysis , 2009 .

[18]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[19]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[20]  R. Hill Acceleration waves in solids , 1962 .

[21]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .

[22]  Esteban Samaniego,et al.  On the strong discontinuity approach in finite deformation settings , 2003 .

[23]  W. Brocks,et al.  Modeling of plane strain ductile rupture , 2003 .

[24]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 2: NUMERICAL SIMULATION , 1996 .

[25]  S. M. Graham,et al.  On stress-state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule , 2011 .

[26]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[27]  J. Rice Localization of plastic deformation , 1976 .

[28]  P. Onck,et al.  Multiscale modeling of ductile failure in metallic alloys , 2010 .

[29]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[30]  J. Besson,et al.  A non-local finite element based on volumetric strain gradient: Application to ductile fracture , 2009 .

[31]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[32]  M. Ortiz,et al.  A finite element method for localized failure analysis , 1987 .

[33]  A. l. Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique , 1904, Nature.

[34]  Viggo Tvergaard,et al.  Ductile failure analyses on massively parallel computers , 1994 .

[35]  A. Huespe,et al.  Continuum approach to the numerical simulation of material failure in concrete , 2004 .

[36]  A. Huespe,et al.  On some topics for the numerical simulation of ductile fracture , 2008 .

[37]  A. Huespe,et al.  An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems , 2008 .

[38]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[39]  武 田村 “Elastoplasticity Theory”(弾塑性理論) , 2010 .

[40]  J. Leblond,et al.  Ductile Fracture by Void Growth to Coalescence , 2010 .

[41]  A. Huespe,et al.  On the numerical resolution of the discontinuous material bifurcation problem , 2010 .