Chiral fermions from lattice boundaries

Abstract We construct a model in which four-dimensional chiral fermions arise on the boundaries of a five-dimensional lattice with free boundary conditions in the fifth direction. The physical content is similar to Kaplan's model domain wall fermions, yet the present construction has several technical advantages. We discuss some aspects of perturbation theory, as well as possible applications of the model both for lattice QCD and for the on-going attempts to construct a lattice chiral gauge theory.

[1]  I. Montvay A chiral SU(2)L⊗SU(2)R gauge model on the lattice , 1987 .

[2]  M. Stone Edge waves in the quantum Hall effect , 1991 .

[3]  A. Casher Chiral symmetry breaking in quark confining theories , 1979 .

[4]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[5]  X. Wen THEORY OF THE EDGE STATES IN FRACTIONAL QUANTUM HALL EFFECTS , 1992 .

[6]  D. B. Kaplan A Method for simulating chiral fermions on the lattice , 1992 .

[7]  G. Dunne,et al.  Odd Dimensional Gauge Theories and Current Algebra , 1990 .

[8]  K. Jansen,et al.  Chern-Simons currents and chiral fermions on the lattice , 1992, hep-lat/9209003.

[9]  J. Preskill,et al.  Chiral gauge theories on the lattice , 1986 .

[10]  G. Jona-Lasinio,et al.  Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II , 1961 .

[11]  J. Smit,et al.  The vacuum polarization with SLAC lattice fermions , 1979 .

[12]  T. Trappenberg,et al.  Search for an upper bound of the renormalized Yukawa coupling in a lattice fermion-Higgs model , 1992 .

[13]  Chiral Fermions and Anomalies on a Finite Lattice , 1992, hep-lat/9206014.

[14]  L. Karsten,et al.  Lattice Fermions: Species Doubling, Chiral Invariance, and the Triangle Anomaly , 1981 .

[15]  Claudio Rebbi,et al.  Chiral-invariant regularization of fermions on the lattice , 1987 .

[16]  F. Wilczek,et al.  Fractional Quantum Numbers on Solitons , 1981 .

[17]  M. Golterman,et al.  Absence of Chiral Fermions in the Eichten--Preskill Model , 1992, hep-lat/9206010.

[18]  I. M. Singer,et al.  Recent Developments in Gauge Theories , 1980 .

[19]  G. Dunne,et al.  Conformal symmetry and universal properties of quantum Hall states , 1993 .

[20]  K. Jansen,et al.  Critical momenta of lattice chiral fermions , 1992, hep-lat/9209002.

[21]  A. Pelissetto,et al.  Can a non-local lattice fermion formulation avoid the doubling problem? , 1987 .

[22]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[23]  I. Montvay Non-perturbative approach to scalar-fermion theories , 1988 .

[24]  Infinitely many regulator fields for chiral fermions , 1992, hep-lat/9212019.

[25]  A. Zee,et al.  Chiral anomalies, higher dimensions, and differential geometry , 1984 .

[26]  A. Casher,et al.  Chiral symmetry breaking in confining theories , 1980 .

[27]  C. Callan,et al.  ANOMALIES AND FERMION ZERO MODES ON STRINGS AND DOMAIN WALLS , 1985 .

[28]  Standard model and chiral gauge theories on the lattice , 1990 .

[29]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[30]  I. Montvay Higgs- and Yukawa-theories on the lattice , 1992 .

[31]  J. Smit,et al.  Axial symmetry in lattice theories , 1978 .

[32]  The euclidean spectrum of Kaplan's lattice chiral fermions , 1992, hep-lat/9212010.

[33]  Nathan Seiberg,et al.  Remarks on the canonical quantization of the Chern-Simons-Witten theory , 1989 .

[34]  E. Kovacs,et al.  A New approach to chiral fermions on the lattice , 1991 .

[35]  J. Smit,et al.  Fermion interactions in models with strong Wilson-Yukawa couplings , 1992 .

[36]  P.V.D. Swift The electroweak theory on the lattice , 1984 .