A Density Functional Theory Study of Coniferyl Alcohol Intermonomeric Cross Linkages in Lignin - Three-Dimensional Structures, Stabilities and the Thermodynamic Control Hypothesis

Summary Density functional theory methods are utilized to investigate structural features and stabilities of the most common lignin dimerization products. It is found that intra-molecular hydrogen bonding acts as a stabilizing force in the lowest-energy conformer(s) of several different dimeric lignin structures. Furthermore, the calculations show that the hypothesis of thermodynamic control of monolignol dimerization accounts for some of the results obtained in experimental studies aimed at determining the ratios of intermonomeric linkages. A quantitative correlation between experimentally observed ratios and calculated relative energies cannot, however, be pointed out.

[1]  T. Elder,et al.  The application of molecular orbital calculations to wood chemistry , 1984, Wood Science and Technology.

[2]  M. Zimmer,et al.  Theoretical study of the mechanism of peptide ring formation in green fluorescent protein , 2001 .

[3]  M. Blomberg,et al.  Transition-Metal Systems in Biochemistry Studied by High-Accuracy Quantum Chemical Methods , 2000 .

[4]  M. Blomberg,et al.  Density functional theory of biologically relevant metal centers. , 2003, Annual review of physical chemistry.

[5]  C. Houtman What Factors Control Dimerization of Coniferyl Alcohol? , 1999 .

[6]  K. Eriksson,et al.  Computational Studies of the Three-Dimensional Structure of Guaiacyl ß-O-4 Lignin Models , 1998 .

[7]  Norman G. Lewis,et al.  Stereoselective Bimolecular Phenoxy Radical Coupling by an Auxiliary (Dirigent) Protein Without an Active Center , 1997, Science.

[8]  K. Eriksson,et al.  The significance of intra-molecular hydrogen bonding in the ß-O-4 linkage of lignin , 1996 .

[9]  Charles W. Bauschlicher,et al.  A comparison of the accuracy of different functionals , 1995 .

[10]  Harry Partridge,et al.  The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD(T) and B3LYP , 1995 .

[11]  K. Eriksson,et al.  A Molecular Mechanics Investigation of Lignin Structure. I. Conformational Analysis of 1-Phenyl-2-Phenoxy-1,3-Propanediol Using MM 3 , 1995 .

[12]  J. Faulon,et al.  Is there any order in the structure of lignin , 1994 .

[13]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[14]  T. Pilati,et al.  Regio- and diastereo-selective synthesis of dimeric lignans using oxidative coupling , 1993 .

[15]  K. Lundquist Proton (1H) NMR Spectroscopy , 1992 .

[16]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[17]  J. Stewart Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi , 1991 .

[18]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[19]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[20]  I. Pelczer,et al.  Studies on Lignin Model Compounds of the beta-O-4 Type: Crystal Structures of threo-1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol and 3-Hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1-propanone--Methanol (1/1). , 1988 .

[21]  M. Mckee,et al.  The Application of Molecular Orbital Calculations to Wood Chemistry. V. The Formation and Reactivity of Quinone Methide Intermediates , 1988 .

[22]  Jacopo Tomasi,et al.  Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. , 1987 .

[23]  J. Koskikallio,et al.  Stereochemical assignment of the diastereomers of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol from X-rays analysis , 1986 .

[24]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[25]  T. Higuchi Biosynthesis of Lignin , 1981 .

[26]  N. Terashima FORMATION AND STRUCTURE OF LIGNIN , 1980 .

[27]  T. Higuchi,et al.  Dehydrogenative Polymerization of 3,5-Disubstituted p-Coumaryl Alcohols , 1976 .

[28]  G. C. Levy,et al.  Carbon-13 nuclear magnetic resonance spectroscopy. , 1973, Science.

[29]  G. Miksche,et al.  Über das Verhalten des Lignins bei der Alkalikochung. VIII. Isomerisierung der Phenolatanionen von erythro- und threo-Isoeugenolglykol-beta-(2-methoxyphenyl)-äther über ein Chinomethid. , 1972 .

[30]  K. Freudenberg Lignin: Its Constitution and Formation from p-Hydroxycinnamyl Alcohols , 1965, Science.

[31]  BOTANiCAL Gazette Lignins , 1920, Botanical Gazette.