On small blocking sets and their linearity

We prove that a small minimal blocking set of PG(2,q) is ''very close'' to be a linear blocking set over some subfield GF(p^e)

[1]  Martin Bokler,et al.  Minimal Blocking Sets in Projective Spaces of Square Order , 2001, Des. Codes Cryptogr..

[2]  Michel Lavrauw,et al.  Linear (q+1)-fold Blocking Sets in PG(2, q4) , 2000 .

[3]  T. Szonyi Blocking Sets in Desarguesian Affine and Projective Planes , 1997 .

[4]  Dennis Saleh Zs , 2001 .

[5]  Tamás Szőnyi,et al.  Lacunary Polynomials, Multiple Blocking Sets and Baer Subplanes , 1999 .

[6]  Simeon Ball The number of directions determined by a function over a finite field , 2003, J. Comb. Theory, Ser. A.

[7]  Guglielmo Lunardon,et al.  Normal Spreads , 1999 .

[8]  Zsuzsa Weiner Small point sets of PG(n,q) intersecting eachk-space in 1 modulo points , 2005 .

[9]  Aart Blokhuis,et al.  Blocking Sets of Almost Rédei Type , 1997, J. Comb. Theory, Ser. A.

[10]  Olga Polverino Small Blocking Sets in PG(2, p) , 2000, Des. Codes Cryptogr..

[11]  Leo Storme,et al.  On 1-Blocking Sets in PG(n,q), n ≥ 3 , 2000, Des. Codes Cryptogr..

[12]  Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q) , 2001 .

[13]  Olga Polverino,et al.  On Small Blocking Sets , 1998, Comb..

[14]  Aart Blokhuis,et al.  On the size of a blocking set inPG(2,p) , 1994, Comb..

[15]  Tamás Szonyi,et al.  Small Blocking Sets in Higher Dimensions , 2001, J. Comb. Theory, Ser. A.

[16]  Aart Blokhuis,et al.  On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.

[17]  L. Lovász,et al.  On multiple blocking sets in Galois planes , 2007 .