On small blocking sets and their linearity
暂无分享,去创建一个
[1] Martin Bokler,et al. Minimal Blocking Sets in Projective Spaces of Square Order , 2001, Des. Codes Cryptogr..
[2] Michel Lavrauw,et al. Linear (q+1)-fold Blocking Sets in PG(2, q4) , 2000 .
[3] T. Szonyi. Blocking Sets in Desarguesian Affine and Projective Planes , 1997 .
[4] Dennis Saleh. Zs , 2001 .
[5] Tamás Szőnyi,et al. Lacunary Polynomials, Multiple Blocking Sets and Baer Subplanes , 1999 .
[6] Simeon Ball. The number of directions determined by a function over a finite field , 2003, J. Comb. Theory, Ser. A.
[7] Guglielmo Lunardon,et al. Normal Spreads , 1999 .
[8] Zsuzsa Weiner. Small point sets of PG(n,q) intersecting eachk-space in 1 modulo points , 2005 .
[9] Aart Blokhuis,et al. Blocking Sets of Almost Rédei Type , 1997, J. Comb. Theory, Ser. A.
[10] Olga Polverino. Small Blocking Sets in PG(2, p) , 2000, Des. Codes Cryptogr..
[11] Leo Storme,et al. On 1-Blocking Sets in PG(n,q), n ≥ 3 , 2000, Des. Codes Cryptogr..
[12] Linear Point Sets and Rédei Type k-blocking Sets in PG(n, q) , 2001 .
[13] Olga Polverino,et al. On Small Blocking Sets , 1998, Comb..
[14] Aart Blokhuis,et al. On the size of a blocking set inPG(2,p) , 1994, Comb..
[15] Tamás Szonyi,et al. Small Blocking Sets in Higher Dimensions , 2001, J. Comb. Theory, Ser. A.
[16] Aart Blokhuis,et al. On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.
[17] L. Lovász,et al. On multiple blocking sets in Galois planes , 2007 .