Modeling Brain Resonance Phenomena Using a Neural Mass Model

Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect.

[1]  K Shinosaki,et al.  Preservation of alpha rhythm shortly after photic driving. , 1993, The International journal of neuroscience.

[2]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[3]  M. Meister,et al.  Synchronous period-doubling in flicker vision of salamander and man. , 1998, Journal of neurophysiology.

[4]  Mark Levi,et al.  A period-adding phenomenon , 1990 .

[5]  P. Nunez Toward a quantitative description of large-scale neocortical dynamic function and EEG , 2000, Behavioral and Brain Sciences.

[6]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[7]  A F C Infantosi,et al.  Topographic aspects of photic driving in the electroencephalogram of children and adolescents. , 2004, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[8]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[9]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization , 2006, NeuroImage.

[10]  O. Rössler The Chaotic Hierarchy , 1983 .

[11]  A I Fedotchev,et al.  Stability of resonance EEG reactions to flickering light in humans. , 1990, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[12]  Anthony Randal McIntosh,et al.  Towards a network theory of cognition , 2000, Neural Networks.

[13]  Ulrich Parlitz,et al.  Superstructure in the bifurcation set of the Duffing equation ẍ + dẋ + x + x3 = f cos(ωt) , 1985 .

[14]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[15]  E. John,et al.  A Field Theory of Consciousness , 2001, Consciousness and Cognition.

[16]  Pekcan Ungan,et al.  Dynamics of brain rhythmic and evoked potentials , 1975, Biological Cybernetics.

[17]  Morten Brøns,et al.  Circle Maps and the Devil's Staircase in a Periodically Perturbed Oregonator , 1997 .

[18]  J Kurths,et al.  Phase synchronization in the forced Lorenz system. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Olivier D. Faugeras,et al.  Bifurcation Analysis of Jansen's Neural Mass Model , 2006, Neural Computation.

[20]  Ingo Bojak,et al.  Axonal Velocity Distributions in Neural Field Equations , 2010, PLoS Comput. Biol..

[21]  W. Freeman,et al.  Odor-related bulbar EEG spatial pattern analysis during appetitive conditioning in rabbits. , 1985, Behavioral neuroscience.

[22]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[23]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[24]  A. Babloyantz,et al.  Predictability of human EEG: a dynamical approach , 1991, Biological Cybernetics.

[25]  D. Leopold,et al.  Neural activity in the visual thalamus reflects perceptual suppression , 2009, Proceedings of the National Academy of Sciences.

[26]  S. Makeig Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. , 1993, Electroencephalography and clinical neurophysiology.

[27]  L. Kristiansson,et al.  Performance of a model for a local neuron population , 1978, Biological Cybernetics.

[28]  A. Watson,et al.  Patterns of temporal interaction in the detection of gratings , 1977, Vision Research.

[29]  Axel Hutt,et al.  Stability and Bifurcations in Neural Fields with Finite Propagation Speed and General Connectivity , 2004, SIAM J. Appl. Math..

[30]  T. Lofaro,et al.  Period-adding bifurcations in a one parameter family of interval maps , 1996 .

[31]  G. L. Gebber,et al.  Human brain alpha rhythm: nonlinear oscillation or filtered noise? , 1999, Brain Research.

[32]  A. Infantosi,et al.  Evaluating the entrainment of the alpha rhythm during stroboscopic flash stimulation by means of coherence analysis. , 2005, Medical engineering & physics.

[33]  Huxley Af,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve. 1952. , 1990 .

[34]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[35]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[36]  Axel Hutt,et al.  Neural Fields with Distributed Transmission Speeds and Long-Range Feedback Delays , 2006, SIAM J. Appl. Dyn. Syst..

[37]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[38]  Jens Haueisen,et al.  Alpha entrainment in human electroencephalogram and magnetoencephalogram recordings , 2006, Neuroreport.

[39]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[40]  Ulrich Stephani,et al.  Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern. , 2006, Brain : a journal of neurology.

[41]  A. Babloyantz,et al.  Low-dimensional chaos in an instance of epilepsy. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Stanley Finger,et al.  Origins of neuroscience: A history of explorations into brain function. , 1994 .

[43]  S. Cobb,et al.  Photic driving as a cause of clinical seizures in epileptic patients. , 1947, Archives of neurology and psychiatry.

[44]  F. Atay,et al.  Recovering smooth dynamics from time series with the aid of recurrence plots. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  J. Flaherty,et al.  Frequency Entrainment of a Forced van der pol Oscillator. , 1977 .

[46]  Seyed Mohammad Reza Hashemi Golpayegani,et al.  On the discrimination of patho-physiological states in epilepsy by means of dynamical measures , 2009, Comput. Biol. Medicine.

[47]  Parlitz,et al.  Period-doubling cascades and devil's staircases of the driven van der Pol oscillator. , 1987, Physical review. A, General physics.

[48]  T. Collura Neocortical Dynamics and Human EEG Rhythms , 1996 .

[49]  Ali H. Nayfeh,et al.  Bifurcations in a forced softening duffing oscillator , 1989 .

[50]  W. Freeman Evidence from human scalp electroencephalograms of global chaotic itinerancy. , 2003, Chaos.

[51]  Leonidas D. Iasemidis,et al.  The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex , 1991 .

[52]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[53]  Yan Zhang,et al.  Prestimulus Cortical Activity is Correlated with Speed of Visuomotor Processing , 2008, Journal of Cognitive Neuroscience.

[54]  Lawrence M. Ward,et al.  Increased gamma-band synchrony precedes switching of conscious perceptual objects in binocular rivalry , 2005, Neuroreport.

[55]  Ludovic Righetti,et al.  Engineering entrainment and adaptation in limit cycle systems , 2006, Biological Cybernetics.

[56]  Steven H. Strogatz,et al.  Synchronization: A Universal Concept in Nonlinear Sciences , 2003 .

[57]  A. Jampolsky,et al.  Consequences of retinal image clarity versus occlusion (absent) versus diffusion. , 1994, Transactions of the American Ophthalmological Society.

[58]  G. Avanzini,et al.  Photosensitive epilepsy: Spectral and coherence analyses of EEG using 14Hz intermittent photic stimulation , 2010, Clinical Neurophysiology.

[59]  John R Huguenard,et al.  Barrel Cortex Microcircuits: Thalamocortical Feedforward Inhibition in Spiny Stellate Cells Is Mediated by a Small Number of Fast-Spiking Interneurons , 2006, The Journal of Neuroscience.

[60]  S. Coombes,et al.  Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  J. Kurths,et al.  Synchronization in Oscillatory Networks , 2007 .

[62]  Christian Igel,et al.  A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging , 2010, PLoS Comput. Biol..

[63]  A. Babloyantz,et al.  Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle , 1985 .

[64]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[65]  K. Aihara,et al.  Structures of attractors in periodically forced neural oscillators , 1986 .

[66]  Mitchell Glickstein,et al.  Foundations of the neuron doctrine , 1993, Medical History.

[67]  Dmitry E. Postnov,et al.  Synchronization in driven chaotic systems: Diagnostics and bifurcations , 1999 .

[68]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[69]  Viktor K. Jirsa,et al.  Handbook of Brain Connectivity , 2007 .

[70]  J. Sleigh,et al.  The Sleep Cycle Modelled as a Cortical Phase Transition , 2005, Journal of biological physics.

[71]  Arkady Pikovsky,et al.  A dynamical model for periodic and chaotic oscillations in the Belousov-Zhabotinsky reaction , 1981 .

[72]  Nelson J. Trujillo-Barreto,et al.  Realistically Coupled Neural Mass Models Can Generate EEG Rhythms , 2007, Neural Computation.

[73]  C. Tallon-Baudry,et al.  Attention and awareness in synchrony , 2004, Trends in Cognitive Sciences.

[74]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[75]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[76]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[77]  T. Gilbert,et al.  Stable oscillations and Devil's Staircase in the van der Pol oscillator , 2000, Int. J. Bifurc. Chaos.

[78]  K. Miller Understanding layer 4 of the cortical circuit: a model based on cat V1. , 2003, Cerebral cortex.

[79]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Mingzhou Ding,et al.  Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance , 2001, Biological Cybernetics.

[81]  John R. Terry,et al.  Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[82]  Bert Sakmann,et al.  Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. , 2005, Progress in biophysics and molecular biology.

[83]  Randall D. Beer,et al.  On the Dynamics of Small Continuous-Time Recurrent Neural Networks , 1995, Adapt. Behav..

[84]  Nicholas J. Priebe,et al.  Inhibition, Spike Threshold, and Stimulus Selectivity in Primary Visual Cortex , 2008, Neuron.

[85]  J Iriarte,et al.  Gamma-band phase clustering and photosensitivity: is there an underlying mechanism common to photosensitive epilepsy and visual perception? , 2003, Brain : a journal of neurology.

[86]  Karl J. Friston,et al.  Dynamic causal modelling of evoked responses: The role of intrinsic connections , 2007, NeuroImage.

[87]  Pekcan Ungan,et al.  Dynamics of brain rhythmic and evoked potentials , 1975, Biological Cybernetics.

[88]  Karl J. Friston,et al.  Stochastic models of neuronal dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[89]  E. Meron Pattern formation in excitable media , 1992 .

[90]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[91]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[92]  W. Freeman Mass action in the nervous system : examination of the neurophysiological basis of adaptive behavior through the EEG , 1975 .

[93]  Yuchio Yanagawa,et al.  Fast activation of feedforward inhibitory neurons from thalamic input and its relevance to the regulation of spike sequences in the barrel cortex , 2010, The Journal of physiology.

[94]  Moayed Daneshyari,et al.  Epileptic EEG: a comprehensive study of nonlinear behavior. , 2010, Advances in experimental medicine and biology.

[95]  H Petsche,et al.  [About the intracortical genesis of spontaneous activity and photic driving: EEG-histological correlations in the visual cortex in rabbits (author's transl)]. , 1979, EEG-EMG Zeitschrift fur Elektroenzephalographie, Elektromyographie und verwandte Gebiete.

[96]  Wolfgang Maass,et al.  Cerebral Cortex Advance Access published February 15, 2006 A Statistical Analysis of Information- Processing Properties of Lamina-Specific , 2022 .

[97]  Stiliyan Kalitzin,et al.  Enhancement of phase clustering in the EEG/MEG gamma frequency band anticipates transitions to paroxysmal epileptiform activity in epileptic patients with known visual sensitivity , 2002, IEEE Transactions on Biomedical Engineering.

[98]  K Aihara,et al.  Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator. , 1984, Journal of theoretical biology.

[99]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[100]  C A Sandman,et al.  Topographic Analysis of EEG Photic Driving in Patients with Schizophrenia following Clozapine Treatment , 1998, Clinical EEG.

[101]  Tatsuya Uezu,et al.  Topological Aspects in Chaos and in 2k-Period Doubling Cascade , 1982 .

[102]  Bruce W. Knight,et al.  Dynamics of Encoding in Neuron Populations: Some General Mathematical Features , 2000, Neural Computation.

[103]  Bernhard Graimann,et al.  Phase coupling between different motor areas during tongue-movement imagery , 2004, Neuroscience Letters.

[104]  Viktor K. Jirsa,et al.  Neuronal Dynamics and Brain Connectivity , 2007 .

[105]  M. N. Livanov Spatial organization of cerebral processes , 1977 .

[106]  Stephen Coombes,et al.  Large-scale neural dynamics: Simple and complex , 2010, NeuroImage.

[107]  D. Liley,et al.  Robust chaos in a model of the electroencephalogram: Implications for brain dynamics. , 2001, Chaos.

[108]  M. Kaminski,et al.  Granger causality and information flow in multivariate processes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[110]  David T. J. Liley,et al.  Chaos and generalised multistability in a mesoscopic model of the electroencephalogram , 2009 .

[111]  Erik Mosekilde,et al.  From multi-layered resonance tori to period-doubled ergodic tori , 2010 .

[112]  Hojjat Adeli,et al.  Chaos in the Brain: Novel Methodologies for Epilepsy Diagnosis and Seizure Detection , 2009 .

[113]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[114]  Lennaert van Veen,et al.  Chaos via Shilnikov's saddle-node bifurcation in a theory of the electroencephalogram. , 2006, Physical review letters.

[115]  Laurent Mouchard,et al.  A fast and efficient algorithm for mapping short sequences to a reference genome. , 2010, Advances in experimental medicine and biology.

[116]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[117]  A. Nayfeh,et al.  Prediction of bifurcations in a parametrically excited duffing oscillator , 1990 .

[118]  Ulrich Parlitz,et al.  BIFURCATION STRUCTURE OF THE DRIVEN VAN DER POL OSCILLATOR , 1993 .

[119]  Mario Pellicoro,et al.  Steady-state visual evoked potentials in the low frequency range in migraine: a study of habituation and variability phenomena. , 2003, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[120]  Hao Bai-lin,et al.  INTERMITTENT CHAOS IN THE FORCED BRUSSELATOR , 1983 .

[121]  A. Daffertshofer,et al.  Multivariate Ornstein-Uhlenbeck processes with mean-field dependent coefficients: application to postural sway. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  W. G. Price,et al.  Computing Lyapunov exponents based on the solution expression of the variational system , 2006, Appl. Math. Comput..

[123]  W. J. Williams,et al.  Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures , 2005, Brain Topography.

[124]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[125]  J. Kelso,et al.  Cortical coordination dynamics and cognition , 2001, Trends in Cognitive Sciences.

[126]  H Spekreijse,et al.  Light diffusion in photosensitive epilepsy. , 1998, Electroencephalography and clinical neurophysiology.

[127]  T Okuma,et al.  High Amplitude Photic Driving evoked by Flickering‐Pattern in Neuropsychiatric Patients — With Special Reference to Epileptics , 1979, Folia psychiatrica et neurologica japonica.

[128]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[129]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[130]  Walter J. Freeman,et al.  TUTORIAL ON NEUROBIOLOGY: FROM SINGLE NEURONS TO BRAIN CHAOS , 1992 .

[131]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[132]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[133]  Viktor K. Jirsa,et al.  Connectivity and dynamics of neural information processing , 2007, Neuroinformatics.

[134]  Richard B. Silberstein,et al.  Steady state visually evoked potential, brain resonances and cognitive processes , 2000 .

[135]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[136]  Karl J. Friston,et al.  Modelling event-related responses in the brain , 2005, NeuroImage.

[137]  Steven G. Potkin,et al.  Electroencephalographic photic driving in patients with schizophrenia and depression , 1997, Biological Psychiatry.

[138]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[139]  Andreas Spiegler,et al.  Bifurcation Analysis of Neural Mass Models , 2010 .

[140]  Fabrice Wendling,et al.  Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals , 2000, Biological Cybernetics.

[141]  Jürgen Kurths,et al.  Alternating Locking Ratios in Imperfect Phase Synchronization , 1999 .

[142]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[143]  Diego Contreras,et al.  Electrophysiological classes of neocortical neurons , 2004, Neural Networks.

[144]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[145]  O. Rössler An equation for hyperchaos , 1979 .

[146]  M. Steriade Coherent oscillations and short-term plasticity in corticothalamic networks , 1999, Trends in Neurosciences.

[147]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[148]  S. Watanabe,et al.  The dynamics of phase relationships of alpha waves during photic driving. , 1993, Electroencephalography and clinical neurophysiology.

[149]  Rajesh P. N. Rao,et al.  Spectral Changes in Cortical Surface Potentials during Motor Movement , 2007, The Journal of Neuroscience.

[150]  David Barton,et al.  Transitions to spike-wave oscillations and epileptic dynamics in a human cortico-thalamic mean-field model , 2009, Journal of Computational Neuroscience.

[151]  Ben H. Jansen,et al.  A neurophysiologically-based mathematical model of flash visual evoked potentials , 2004, Biological Cybernetics.

[152]  L. F Abbott,et al.  Lapicque’s introduction of the integrate-and-fire model neuron (1907) , 1999, Brain Research Bulletin.

[153]  W. Freeman,et al.  EEG Spatial Pattern Differences with Discriminated Odors Manifest Chaotic and Limit Cycle Attractors in Olfactory Bulb of Rabbits , 1986 .

[154]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[155]  V. V. Lazarev,et al.  Interhemispheric asymmetry in EEG photic driving coherence in childhood autism , 2010, Clinical Neurophysiology.

[156]  V. Lazarev,et al.  Photic driving in the electroencephalogram of children and adolescents: harmonic structure and relation to the resting state. , 2001, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[157]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .