Relighting 3D Scenes with a Continuously Moving Camera

This paper proposes a novel technique for 3D scene relighting with interactive viewpoint changes. The proposed technique is based on a deep framebuffer framework for fast relighting computation which adopts image-based techniques to provide arbitrary view-changing. In the preprocessing stage, the shading parameters required for the surface shaders, such as surface color, normal, depth, ambient/diffuse/specular coefficients, and roughness, are cached into multiple deep framebuffers generated by several caching cameras which are created in an automatic manner. When the user designs the lighting setup, the relighting renderer builds a map to connect a screen pixel for the current rendering camera to the corresponding deep framebuffer pixel and then computes illumination at each pixel with the cache values taken from the deep framebuffers. All the relighting computations except the deep framebuffer pre-computation are carried out at interactive rates by the GPU.