Distributed poly-square mapping for large-scale semi-structured quad mesh generation

Abstract We develop a distributed poly-square mapping algorithm for large-scale 2D geometric regions, which is suitable for generating huge quadrilateral meshes in parallel using computer clusters. Our approach adopts a divide-and-conquer strategy based on domain decomposition. We first partition the data into solvable subregions, balancing their size, geometry, and communication cost; then, poly-square maps will be solved on subregions; these maps are finally merged and optimized globally through a multi-pass optimization algorithm. We demonstrate that our meshing framework can handle very big and complex geometric datasets using high performance clusters efficiently and generate high-quality semi-structured quad meshes.

[1]  James Chen,et al.  QMCF: QMorph Cross Field-driven Quad-dominant Meshing Algorithm , 2014 .

[2]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[3]  David L. Rigby TopMaker: A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis , 2003 .

[4]  Nikos Chrisochoides,et al.  Delaunay Decoupling Method for Parallel Guaranteed Quality Planar Mesh Refinement , 2005, SIAM J. Sci. Comput..

[5]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[6]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[7]  Jin Huang,et al.  A wave-based anisotropic quadrangulation method , 2010, SIGGRAPH 2010.

[8]  O. Zienkiewicz,et al.  A new approach to the development of automatic quadrilateral mesh generation , 1991 .

[9]  Kazuhiro Nakahashi,et al.  Parallel unstructured mesh generation by an advancing front method , 2007, Math. Comput. Simul..

[10]  Yang Liu,et al.  Efficient Volumetric PolyCube‐Map Construction , 2016, Comput. Graph. Forum.

[11]  Trevor T. Robinson,et al.  Enhanced medial-axis-based block-structured meshing in 2-D , 2016, Comput. Aided Des..

[12]  Xin Li,et al.  A Geometry-aware Data Partitioning Algorithm for Parallel Quad Mesh Generation on Large-scale 2D Regions , 2015 .

[13]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[14]  V. A. Garanzha,et al.  Regularization of the barrier variational method of grid generation , 1999 .

[15]  Kang Zhang,et al.  Optimizing polycube domain construction for hexahedral remeshing , 2014, Comput. Aided Des..

[16]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[17]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[18]  Christophe Geuzaine,et al.  A frontal Delaunay quad mesh generator using the L ∞ norm , 2013, IMR.

[19]  Marcel Campen,et al.  Quad Layout Embedding via Aligned Parameterization , 2014, Comput. Graph. Forum.

[20]  Suzanne M. Shontz,et al.  MDEC: MeTiS-based Domain Decomposition for Parallel 2D Mesh Generation , 2011, ICCS.

[21]  Arturo Cifuentes,et al.  A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis , 1992 .

[22]  S. S. Iyengar,et al.  On Computing Mapping of 3D Objects , 2014, ACM Comput. Surv..

[23]  John M. Sullivan,et al.  Automatic conversion of triangular finite element meshes to quadrilateral elements , 1991 .

[24]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[25]  Baining Guo,et al.  All-hex meshing using singularity-restricted field , 2012, ACM Trans. Graph..

[26]  Nikos Chrisochoides,et al.  Guaranteed: quality parallel delaunay refinement for restricted polyhedral domains , 2002, SCG '02.

[27]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[28]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[29]  Hong Qin,et al.  Polycube splines , 2008, Comput. Aided Des..

[30]  Xin Li,et al.  Geometry-aware partitioning of complex domains for parallel quad meshing , 2017, Comput. Aided Des..

[31]  Alla Sheffer,et al.  PolyCut , 2013, ACM Trans. Graph..

[32]  Rainald Löhner,et al.  A 2nd Generation Parallel Advancing Front Grid Generator , 2013, IMR.

[33]  Kangkang Hu,et al.  Centroidal Voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation , 2016 .

[34]  Eugene Zhang,et al.  All‐Hex Mesh Generation via Volumetric PolyCube Deformation , 2011, Comput. Graph. Forum.

[35]  Paul A. Wawrzynek,et al.  An algorithm to generate quadrilateral or triangular element surface meshes in arbitrary domains with applications to crack propagation , 1995 .

[36]  S. H. Lo,et al.  Generating quadrilateral elements on plane and over curved surfaces , 1989 .

[37]  Hujun Bao,et al.  ℓ1-Based Construction of Polycube Maps from Complex Shapes , 2014, ACM Trans. Graph..

[38]  Hujun Bao,et al.  All-hex meshing using closed-form induced polycube , 2016, ACM Trans. Graph..

[39]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[40]  C. Lee,et al.  A new scheme for the generation of a graded quadrilateral mesh , 1994 .