Global transpiration data from sap flow measurements: the SAPFLUXNET database

Abstract. Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.

Bruno H. P. Rosado | N. McDowell | Hyunseok Kim | G. Sun | P. Llorens | J. Linares | D. Berveiller | J. Chave | Maurizio Mencuccini | P. Meir | P. Bolstad | P. Jarvis | J. Grace | W. Werner | M. Migliavacca | A. Granier | J. Ourcival | Leonardo Montagnani | A. Varlagin | N. Delpierre | M. A. Arain | T. David | J. David | R. Norby | G. Bohrer | A. Desai | M. Adams | R. Zweifel | S. McMahon | H. Rocha | D. Bonal | W. Pockman | C. Leuschner | F. Valladares | R. Oren | T. Martin | K. Steppe | B. Schuldt | M. Loranty | G. Wieser | H. Asbjornsen | C. Tol | S. Wullschleger | J. Elbers | J. Limousin | J. Domec | E. Cremonese | S. Sabaté | W. Oberhuber | I. Aranda | M. Mölder | E. Euskirchen | C. Joly | B. Ewers | S. Dzikiti | V. Hernandez-Santana | C. Werner | R. Bracho | F. Tatarinov | Y. Preisler | K. Novick | M. Galvagno | J. Warren | P. Hanson | L. Wingate | N. Hasselquist | K. Anderson‐Teixeira | H. Freitas | Isabelle Maréchaux | A. Griebel | Ó. Pérez-Priego | J. Martínez‐Vilalta | L. Klemedtsson | C. Edgar | K. Schäfer | F. Holwerda | H. Voigt | M. Linderson | I. Meerveld | A. Röll | T. Gimeno | F. Casanoves | F. Do | A. Rocheteau | D. Forrester | T. El-Madany | A. Matheny | S. Pfautsch | P. Peri | P. Lane | R. Oliveira | R. Baxter | F. Thomas | G. Moore | P. Tor-ngern | T. Hölttä | C. Stahl | P. Mitchell | P. Fonti | R. Nolan | R. Poyatos | V. Granda | V. Flo | Balázs Adorján | D. Aguadé | M. P. Aidar | S. Allen | M. Alvarado‐Barrientos | L. Aparecido | E. Beamesderfer | Z. Berry | B. Blakely | J. Boggs | P. Brito | J. Brodeur | Hui Chen | Cesar Cisneros | K. Clark | M. Dohnal | Rebekka Eichstaedt | Cleiton B. Eller | Alicia Forner | O. García-Tejera | C. Ghimire | Yang Guangyu | M. Gush | I. Heinrich | V. Herrmann | Dang Hongzhong | J. Irvine | S. I. N. Ayutthaya | H. Jochheim | J. Kaplick | H. Kropp | F. Lagergren | Petra Lang | A. Lapenas | Víctor Lechuga | Minsu Lee | A. Lindroth | Á. López-Bernal | D. Lüttschwager | C. Macinnis-Ng | I. Mészáros | R. Nakada | F. Niu | N. Obojes | Christopher A. Oishi | Teemu Paljakka | R. L. Peters | K. Rascher | G. Robinson | L. Rowland | A. Rubtsov | Y. Salmon | R. Salomón | E. Sánchez-Costa | A. Shashkin | M. Stojanović | J. C. Suárez | J. Szatniewska | M. Tesař | J. Urban | K. Yi | M. Aidar | O. Garcia-Tejera | M. Alvarado-Barrientos

[1]  R. Vargas,et al.  A Global Database of Soil Respiration Data, Version 5.0 , 2021 .

[2]  Maurizio Mencuccini,et al.  Unravelling the effect of species mixing on water use and drought stress in Mediterranean forests: A modelling approach , 2021 .

[3]  Maurizio Mencuccini,et al.  Using the SAPFLUXNET database to understand transpiration regulation of trees and forests , 2020 .

[4]  P. Blanken,et al.  Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites , 2020, Global change biology.

[5]  Alexander G. Hurley,et al.  Assimilate, process and analyse thermal dissipation sap flow data using the TREX r package , 2020, Methods in Ecology and Evolution.

[6]  A. Mäkelä,et al.  Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances. , 2020, Plant, cell & environment.

[7]  Quantification of uncertainties introduced by data-processing procedures of sap flow measurements using the cut-tree method on a large mature tree , 2020 .

[8]  Xiao Feng,et al.  Open Science principles for accelerating trait-based science across the Tree of Life , 2020, Nature Ecology & Evolution.

[9]  Denis Bastianelli,et al.  TRY plant trait database - enhanced coverage and open access. , 2019, Global change biology.

[10]  Markus Reichstein,et al.  Physics‐Constrained Machine Learning of Evapotranspiration , 2019, Geophysical Research Letters.

[11]  B. Ewers,et al.  AquaFlux: Rapid, transparent and replicable analyses of plant transpiration , 2019, Methods in Ecology and Evolution.

[12]  Daniel M. Johnson,et al.  A dynamic yet vulnerable pipeline: Integration and coordination of hydraulic traits across whole plants. , 2019, Plant, cell & environment.

[13]  N. McDowell,et al.  Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics , 2019, Oecologia.

[14]  D. Tissue,et al.  Assessing the potential functions of nocturnal stomatal conductance in C3 and C4 plants. , 2019, The New phytologist.

[15]  D. Papale,et al.  A robust data cleaning procedure for eddy covariance flux measurements , 2019, Biogeosciences.

[16]  K. Steppe,et al.  A synthesis of bias and uncertainty in sap flow methods , 2019, Agricultural and Forest Meteorology.

[17]  Maurizio Mencuccini,et al.  Modelling water fluxes in plants: from tissues to biosphere. , 2019, The New phytologist.

[18]  A. McElrone,et al.  Functional Status of Xylem Through Time. , 2019, Annual review of plant biology.

[19]  Daniel S. Falster,et al.  The Open Traits Network: Using Open Science principles to accelerate trait-based science across the Tree of Life , 2019 .

[20]  Jacob A. Nelson,et al.  Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities , 2019, Biogeosciences.

[21]  Hui Liu,et al.  Hydraulic traits are coordinated with maximum plant height at the global scale , 2019, Science Advances.

[22]  D. Lawrence,et al.  Implementing Plant Hydraulics in the Community Land Model, Version 5 , 2019, Journal of Advances in Modeling Earth Systems.

[23]  Martin Jung,et al.  The FLUXCOM ensemble of global land-atmosphere energy fluxes , 2018, Scientific Data.

[24]  C. Grossiord,et al.  Having the right neighbors: how tree species diversity modulates drought impacts on forests. , 2020, The New phytologist.

[25]  Janneke HilleRisLambers,et al.  The International Tree‐Ring Data Bank (ITRDB) revisited: Data availability and global ecological representativity , 2018, Journal of Biogeography.

[26]  R. Siegwolf,et al.  Seasonal origins of soil water used by trees , 2018, Hydrology and Earth System Sciences.

[27]  Matthew F. McCabe,et al.  Partitioning of evapotranspiration in remote sensing-based models , 2018, Agricultural and Forest Meteorology.

[28]  Daniel S. Karp,et al.  Hydraulic diversity of forests regulates ecosystem resilience during drought , 2018, Nature.

[29]  S. Linder,et al.  Water balance of pine forests: Synthesis of new and published results , 2018, Agricultural and Forest Meteorology.

[30]  M. Migliavacca,et al.  Basic and extensible post-processing of eddy covariance flux data with REddyProc , 2018, Biogeosciences.

[31]  O. Sonnentag,et al.  Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. , 2018, The New phytologist.

[32]  B. Choat,et al.  Triggers of tree mortality under drought , 2018, Nature.

[33]  M. Scheffer,et al.  Forest-rainfall cascades buffer against drought across the Amazon , 2018, Nature Climate Change.

[34]  Ben Bond-Lamberty,et al.  Data Sharing and Scientific Impact in Eddy Covariance Research , 2018 .

[35]  N. Nadezhdina Revisiting the Heat Field Deformation (HFD) method for measuring sap flow , 2018 .

[36]  H. Asbjornsen,et al.  Why size matters: the interactive influences of tree diameter distribution and sap flow parameters on upscaled transpiration , 2018, Tree physiology.

[37]  Jun Ma,et al.  Assessing the Extent and Impact of Online Data Sharing in Eddy Covariance Flux Research , 2018 .

[38]  Benjamin Smith,et al.  Vegetation demographics in Earth System Models: A review of progress and priorities , 2018, Global change biology.

[39]  N. McDowell,et al.  Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use , 2017, Environmental and Experimental Botany.

[40]  Maurizio Mencuccini,et al.  Stand dynamics modulate water cycling and mortality risk in droughted tropical forest , 2017, Global change biology.

[41]  Diego G Miralles,et al.  A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts , 2017, Nature Ecology & Evolution.

[42]  T. Bauerle,et al.  A global analysis of plant recovery performance from water stress , 2017 .

[43]  H. Cochard,et al.  Plant resistance to drought depends on timely stomatal closure. , 2017, Ecology letters.

[44]  J. Peñuelas,et al.  Relative contribution of groundwater to plant transpiration estimated with stable isotopes , 2017, Scientific Reports.

[45]  J. Ourcival,et al.  Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. , 2017, Plant, cell & environment.

[46]  A. Noormets,et al.  TRACC: an open source software for processing sap flux data from thermal dissipation probes , 2017, Trees.

[47]  Jeffrey J. McDonnell,et al.  Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis , 2017, Scientific Reports.

[48]  Diego G. Miralles,et al.  Revisiting the contribution of transpiration to global terrestrial evapotranspiration , 2017 .

[49]  Markus Weiler,et al.  Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration , 2017 .

[50]  Atul K. Jain,et al.  Global patterns of drought recovery , 2015, Nature.

[51]  Joshua M. Uebelherr,et al.  Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. , 2017, Ecological applications : a publication of the Ecological Society of America.

[52]  Kathy Steppe,et al.  SAPFLUXNET: towards a global database of sap flow measurements. , 2016, Tree physiology.

[53]  G. Sun,et al.  Echohydrological implications of drought for forests in the United States , 2016 .

[54]  P. Blanken,et al.  The increasing importance of atmospheric demand for ecosystem water and carbon fluxes , 2016 .

[55]  Nina Buchmann,et al.  Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. , 2016, Tree physiology.

[56]  C. Miniat,et al.  Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. , 2016, Tree physiology.

[57]  Gil Bohrer,et al.  Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy , 2016 .

[58]  K. Jencso,et al.  Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method , 2016 .

[59]  Valeriy Y. Ivanov,et al.  Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale , 2016 .

[60]  G. Katul,et al.  Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants , 2016 .

[61]  G. Mirfenderesgi Tree-level hydrodynamic approach for modeling aboveground water storage and stomatal conductance illuminates the effects of tree hydraulic strategy , 2016 .

[62]  Ram Oren,et al.  Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes , 2016, SoftwareX.

[63]  E. Rotenberg,et al.  Association between sap flow-derived and eddy covariance-derived measurements of forest canopy CO2 uptake. , 2016, The New phytologist.

[64]  E. Fetzer,et al.  The Observed State of the Water Cycle in the Early Twenty-First Century , 2015 .

[65]  E. Fetzer,et al.  The Observed State of the Energy Budget in the Early Twenty-First Century , 2015 .

[66]  S. Zaehle,et al.  Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis , 2015 .

[67]  C. Bettigole,et al.  Mapping tree density at a global scale , 2015, Nature.

[68]  S. Sabaté,et al.  Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations , 2015 .

[69]  Dario Papale,et al.  Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis , 2015 .

[70]  G. Kuczera,et al.  Use of a forest sapwood area index to explain long‐term variability in mean annual evapotranspiration and streamflow in moist eucalypt forests , 2015 .

[71]  Kathy Steppe,et al.  Diel growth dynamics in tree stems: linking anatomy and ecophysiology. , 2015, Trends in plant science.

[72]  Michael J. Aspinwall,et al.  BAAD: a Biomass And Allometry Database for woody plants , 2015 .

[73]  Jacques Roy,et al.  Processes driving nocturnal transpiration and implications for estimating land evapotranspiration , 2015, Scientific Reports.

[74]  J. Silvertown,et al.  Hydrological niches in terrestrial plant communities: a review , 2015 .

[75]  F. Bongers,et al.  Water-use advantage for lianas over trees in tropical seasonal forests. , 2015, The New phytologist.

[76]  S. Seneviratne,et al.  The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models , 2015, Climate Dynamics.

[77]  Hubert H. G. Savenije,et al.  Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land , 2014 .

[78]  J. Lewis,et al.  Consequences of nocturnal water loss: a synthesis of regulating factors and implications for capacitance, embolism and use in models. , 2014, Tree physiology.

[79]  Markus Reichstein,et al.  Linking plant and ecosystem functional biogeography , 2014, Proceedings of the National Academy of Sciences.

[80]  M. Dietze,et al.  Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land‐surface models: An NACP analysis , 2014 .

[81]  Michael A. Forster How significant is nocturnal sap flow? , 2014, Tree physiology.

[82]  W. Schlesinger,et al.  Transpiration in the global water cycle , 2014 .

[83]  Naftali Lazarovitch,et al.  A review of approaches for evapotranspiration partitioning , 2014 .

[84]  Effects of past growth trends and current water use strategies on Scots pine and pubescent oak drought sensitivity , 2014, European Journal of Forest Research.

[85]  A. Porporato,et al.  The hysteretic evapotranspiration—Vapor pressure deficit relation , 2013 .

[86]  T. Dawson,et al.  External heat-pulse method allows comparative sapflow measurements in diverse functional types in a Mediterranean-type shrubland in South Africa. , 2013, Functional plant biology : FPB.

[87]  B. Medlyn,et al.  Developing an empirical model of canopy water flux describing the common response of transpiration to solar radiation and VPD across five contrasting woodlands and forests , 2013 .

[88]  R. B. Jackson,et al.  Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. , 2013, The New phytologist.

[89]  K. Steppe,et al.  Sap-flux density measurement methods: working principles and applicability. , 2013, Functional plant biology : FPB.

[90]  James S. Clark,et al.  Hydraulic time constants for transpiration of loblolly pine at a free-air carbon dioxide enrichment site. , 2013, Tree physiology.

[91]  Functional convergence in water use of trees from different geographical regions: a meta-analysis , 2013, Trees.

[92]  Alon Ben-Gal,et al.  A review of approaches for evapotranspiration partitioning , 2013 .

[93]  K. Steppe,et al.  Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. , 2012, The New phytologist.

[94]  M. Adams,et al.  Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data. , 2012, Plant, cell & environment.

[95]  Oscar Perpiñán Lamigueiro solaR: Solar Radiation and Photovoltaic Systems with R , 2012 .

[96]  Markus Reichstein,et al.  Climate and vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across a global network of flux towers , 2012 .

[97]  Xu Liang,et al.  Sap Flow Sensors: Construction, Quality Control and Comparison , 2012, Sensors.

[98]  A. Fenyvesi,et al.  Diurnal and seasonal changes in stem radius increment and sap flow density indicate different responses of two co-existing oak species to environmental stress , 2011 .

[99]  R. Dickinson,et al.  A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability , 2011 .

[100]  Bing Liu,et al.  The response of sap flow in desert shrubs to environmental variables in an arid region of China , 2011 .

[101]  M. Rietkerk,et al.  Ecohydrological advances and applications in plant-water relations research: a review , 2011 .

[102]  C. Werner,et al.  On the use of phloem sap δ¹³C as an indicator of canopy carbon discrimination. , 2010, Tree physiology.

[103]  J. Ehleringer,et al.  Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata) , 2010 .

[104]  T. Dawson,et al.  Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens). , 2010, Tree physiology.

[105]  T. McMahon,et al.  Vegetation impact on mean annual evapotranspiration at a global catchment scale , 2010 .

[106]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[107]  Kathy Steppe,et al.  A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods , 2010 .

[108]  A. Thomson,et al.  A global database of soil respiration data , 2010 .

[109]  D. Mackay,et al.  On the representativeness of plot size and location for scaling transpiration from trees to a stand , 2010 .

[110]  G. Katul,et al.  Interannual Invariability of Forest Evapotranspiration and Its Consequence to Water Flow Downstream , 2010, Ecosystems.

[111]  F. Villalobos,et al.  A large closed canopy chamber for measuring CO2 and water vapour exchange of whole trees , 2010 .

[112]  R. Monson,et al.  Modeling whole-tree carbon assimilation rate using observed transpiration rates and needle sugar carbon isotope ratios. , 2010, The New phytologist.

[113]  Kathy Steppe,et al.  Stem-mediated hydraulic redistribution in large roots on opposing sides of a Douglas-fir tree following localized irrigation. , 2009, The New phytologist.

[114]  B. Dichio,et al.  An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. , 2009, Plant, cell & environment.

[115]  Kathy Steppe,et al.  Symbols, SI Units and Physical Quantities Within the Scope of Sap Flow Studies , 2009 .

[116]  D. Hölscher,et al.  Species-specific tree water use characteristics in reforestation stands in the Philippines. , 2009 .

[117]  Jehn-Yih Juang,et al.  The relationship between reference canopy conductance and simplified hydraulic architecture , 2009 .

[118]  G. Goldstein,et al.  Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: comment on Burgess and Dawson (2008) , 2009, Plant and Soil.

[119]  M. Deml,et al.  A new method of sap flow rate determination in trees , 1973, Biologia Plantarum.

[120]  Shabtai Cohen,et al.  Variations in the radial gradient of sap velocity in trunks of forest and fruit trees , 2008, Plant and Soil.

[121]  M. Heimann,et al.  Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes , 2007 .

[122]  J. Vose,et al.  A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance , 2007 .

[123]  Kathy Steppe,et al.  Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. , 2007, Journal of experimental botany.

[124]  J. Lawrimore,et al.  Extreme Weather Records , 2007 .

[125]  R. Ceulemans,et al.  Plasticity in hydraulic architecture of Scots pine across Eurasia , 2007, Oecologia.

[126]  Maurizio Mencuccini,et al.  A noninvasive optical system for the measurement of xylem and phloem sap flow in woody plants of small stem size. , 2007, Tree physiology.

[127]  W. J. Shuttleworth,et al.  Putting the "vap" into evaporation , 2007 .

[128]  S. Kanae,et al.  Global Hydrological Cycles and World Water Resources , 2006, Science.

[129]  Kathy Steppe,et al.  A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. , 2006, Tree physiology.

[130]  T. Kolb,et al.  The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought , 2005 .

[131]  Tod A. Laursen,et al.  Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics , 2005 .

[132]  Frederick C. Meinzer,et al.  Does water transport scale universally with tree size , 2005 .

[133]  Julian A. Licata,et al.  Time series diagnosis of tree hydraulic characteristics. , 2004, Tree physiology.

[134]  N. Nadezhdina,et al.  Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands , 2004, Trees.

[135]  D. Clark,et al.  Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest , 2004 .

[136]  R. Zimmermann,et al.  Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees — a comparison of xylem flow, porometer and cuvette measurements , 1985, Oecologia.

[137]  R. Ceulemans,et al.  Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. , 2002, Tree physiology.

[138]  P. Lu,et al.  Estimation of whole-plant transpiration of bananas using sap flow measurements. , 2002, Journal of experimental botany.

[139]  F. Do,et al.  Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 2. Advantages and calibration of a noncontinuous heating system. , 2002, Tree physiology.

[140]  M. G. Ryan,et al.  Evaluating different soil and plant hydraulic constraints on tree function using a model and sap flow data from ponderosa pine , 2001 .

[141]  M. Adams,et al.  An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. , 2001, Tree physiology.

[142]  Dennis D. Baldocchi,et al.  A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance , 2001 .

[143]  E. K. Chacko,et al.  Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. , 2000, Tree physiology.

[144]  John Tenhunen,et al.  The effect of tree height on crown level stomatal conductance , 2000 .

[145]  Nathan Phillips,et al.  Survey and synthesis of intra‐ and interspecific variation in stomatal sensitivity to vapour pressure deficit , 1999 .

[146]  R. Oren,et al.  Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. , 1999, Tree physiology.

[147]  B. Ewers,et al.  CARRY-OVER EFFECTS OF WATER AND NUTRIENT SUPPLY ON WATER USE OF PINUS TAEDA , 1999 .

[148]  D. Whitehead Regulation of stomatal conductance and transpiration in forest canopies. , 1998, Tree physiology.

[149]  Stan D. Wullschleger,et al.  A review of whole-plant water use studies in tree. , 1998, Tree physiology.

[150]  B. Köstner,et al.  Sapflow measurements in forest stands: methods and uncertainties , 1998 .

[151]  Abhijit Nagchaudhuri,et al.  Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow , 1997, Trees.

[152]  J. Cermak,et al.  A unified nomenclature for sap flow measurements. , 1997, Tree physiology.

[153]  S. Allen,et al.  Measurement of sap flow in plant stems , 1996 .

[154]  R. Oren,et al.  Radial patterns of xylem sap flow in non‐, diffuse‐ and ring‐porous tree species , 1996 .

[155]  J. Pontailler,et al.  Transpiration of trees and forest stands: short and long‐term monitoring using sapflow methods , 1996 .

[156]  Hervé Cochard,et al.  Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? , 1996 .

[157]  Paul G. Jarvis,et al.  Scaling processes and problems , 1995 .

[158]  R. Swanson Significant historical developments in thermal methods for measuring sap flow in trees , 1994 .

[159]  C. H. M. van Bavel,et al.  Measurement of mass flow of water in the stems of herbaceous plants , 1987 .

[160]  A. Granier,et al.  Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. , 1987, Tree physiology.

[161]  A. Granier Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres , 1985 .

[162]  M. Zimmermann Xylem Structure and the Ascent of Sap , 1983, Springer Series in Wood Science.

[163]  M. Fuchs,et al.  Improvement of the heat pulse method for determining sap flow in trees , 1981 .

[164]  Tetsuo Sakuratani,et al.  A heat balance method for measuring water flux in the stem of intact plants , 1981 .

[165]  R. H. Swanson,et al.  A Numerical Analysis of Heat Pulse Velocity Theory and Practice , 1981 .

[166]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[167]  R. Whittaker Communities and Ecosystems , 1975 .

[168]  D. Marshall Measurement of Sap Flow in Conifers by Heat Transport. , 1958, Plant physiology.