Secret Sharing Schemes with General Access Structures (Full version)

Secret sharing schemes with general monotone access structures have been widely discussed in the literature. But in some scenarios, non-monotone access structures may have more practical significance. In this paper, we shed a new light on secret sharing schemes realizing general (not necessarily monotone) access structures. Based on an attack model for secret sharing schemes with general access structures, we redefine perfect secret sharing schemes, which is a generalization of the known concept of perfect secret sharing schemes with monotone access structures. Then, we provide for the first time two constructions of perfect secret sharing schemes with general access structures. The first construction can be seen as a democratic scheme in the sense that the shares are generated by the players themselves. Our second construction significantly enhance the efficiency of the system, where the shares are distributed by the trusted center (TC).

[1]  Douglas R. Stinson,et al.  Three characterizations of non-binary correlation-immune and resilient functions , 1995, Des. Codes Cryptogr..

[2]  G. R. Blakley,et al.  Safeguarding cryptographic keys , 1899, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[3]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[4]  Gérard D. Cohen,et al.  Yet another variation on minimal linear codes , 2015, 2015 Information Theory and Applications Workshop (ITA).

[5]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[6]  Chin-Chen Chang,et al.  Secure Key Transfer Protocol Based on Secret Sharing for Group Communications , 2011, IEICE Trans. Inf. Syst..

[7]  P. Sarkar,et al.  Improved construction of nonlinear resilient S-boxes , 2002, IEEE Transactions on Information Theory.

[8]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[9]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[10]  Douglas R Stinson,et al.  Some improved bounds on the information rate of perfect secret sharing schemes , 1990, Journal of Cryptology.

[11]  Anne Canteaut,et al.  Correlation-Immune and Resilient Functions Over a Finite Alphabet and Their Applications in Cryptography , 1999, Des. Codes Cryptogr..

[12]  Fang-Wei Fu,et al.  Multi-receiver Authentication Scheme for Multiple Messages Based on Linear Codes , 2014, ISPEC.

[13]  Sihem Mesnager,et al.  On minimal and almost-minimal linear codes , 2014 .

[14]  Cunsheng Ding,et al.  How to Build Robust Shared Control Systems , 1998, Des. Codes Cryptogr..

[15]  R. J. McEliece,et al.  On sharing secrets and Reed-Solomon codes , 1981, CACM.

[16]  Claude Carlet,et al.  More Correlation-Immune and Resilient Functions over Galois Fields and Galois Rings , 1997, EUROCRYPT.

[17]  Gérard D. Cohen,et al.  Variations on Minimal Linear Codes , 2014, ICMCTA.

[18]  Gérard D. Cohen,et al.  On Minimal and Quasi-minimal Linear Codes , 2013, IMACC.

[19]  Cunsheng Ding,et al.  A Class of Two-Weight and Three-Weight Codes and Their Applications in Secret Sharing , 2015, IEEE Transactions on Information Theory.

[20]  Xian-Mo Zhang,et al.  Ideal Threshold Schemes from MDS Codes , 2002, ICISC.

[21]  Yuliang Zheng,et al.  Cryptographically resilient functions , 1997, IEEE Trans. Inf. Theory.

[22]  Anne Canteaut,et al.  Construction of t-Resilient Functions over a Finite Alphabet , 1996, EUROCRYPT.

[23]  C. Ding Chinese remainder theorem , 1996 .

[24]  G. R. Blakley,et al.  Linear Algebra Approach to Secret Sharing Schemes , 1993, Error Control, Cryptology, and Speech Compression.

[25]  Ueli Maurer,et al.  General Secure Multi-party Computation from any Linear Secret-Sharing Scheme , 2000, EUROCRYPT.

[26]  MARCO CARPENTIERI A perfect threshold secret sharing scheme to identify cheaters , 1995, Des. Codes Cryptogr..

[27]  James L. Massey,et al.  Minimal Codewords and Secret Sharing , 1999 .

[28]  Cunsheng Ding,et al.  Linear codes from perfect nonlinear mappings and their secret sharing schemes , 2005, IEEE Transactions on Information Theory.

[29]  Ivan Damgård,et al.  Secure Multiparty Computation and Secret Sharing , 2015 .

[30]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[31]  Tom Gaertner,et al.  Handbook Of Coding Theory , 2016 .

[32]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[33]  Douglas R. Stinson Cryptography: Theory and Practice, Third Edition , 2005 .

[34]  A. Salomaa,et al.  Chinese remainder theorem: applications in computing, coding, cryptography , 1996 .

[35]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[36]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.