A putative phospholipase C is involved in Pichia fermentans dimorphic transition.

[1]  Jia Liu,et al.  Identification of differentially expressed genes associated with changes in the morphology of Pichia fermentans on apple and peach fruit. , 2012, FEMS yeast research.

[2]  S. Zara,et al.  Pichia fermentans dimorphic changes depend on the nitrogen source. , 2012, Fungal biology.

[3]  S. Villas-Bôas,et al.  The metabolic basis of Candida albicans morphogenesis and quorum sensing. , 2011, Fungal genetics and biology : FG & B.

[4]  S. Raffaele,et al.  Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans , 2010, BMC Genomics.

[5]  M. Schmoll,et al.  Identification of potential marker genes for Trichoderma harzianum strains with high antagonistic potential against Rhizoctonia solani by a rapid subtraction hybridization approach , 2009, Current Genetics.

[6]  Q. Migheli,et al.  The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. , 2007, FEMS yeast research.

[7]  M. Johnston,et al.  Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor , 2007, Yeast.

[8]  H. Brunner,et al.  Candida albicans Sun41p, a Putative Glycosidase, Is Involved in Morphogenesis, Cell Wall Biogenesis, and Biofilm Formation , 2007, Eukaryotic Cell.

[9]  A. Mitchell,et al.  Requirement for Candida albicans Sun41 in Biofilm Formation and Virulence , 2007, Eukaryotic Cell.

[10]  T. Mikami,et al.  Hyphal formation of Candida albicans is controlled by electron transfer system. , 2006, Biochemical and biophysical research communications.

[11]  G. Fink,et al.  Feedback control of morphogenesis in fungi by aromatic alcohols. , 2006, Genes & development.

[12]  D. MacCallum,et al.  Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. , 2005, Microbiology.

[13]  Brice Enjalbert,et al.  Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. , 2005, Molecular biology of the cell.

[14]  J. Morschhäuser,et al.  The Mep2p ammonium permease controls nitrogen starvation‐induced filamentous growth in Candida albicans , 2005, Molecular microbiology.

[15]  J. Thevelein,et al.  Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. , 2005, Biochemical Society transactions.

[16]  M. Whiteway,et al.  Candida morphogenesis and host-pathogen interactions. , 2004, Current opinion in microbiology.

[17]  Alistair J. P. Brown,et al.  APSES proteins regulate morphogenesis and metabolism in Candida albicans. , 2004, Molecular biology of the cell.

[18]  J. Berman,et al.  The distinct morphogenic states of Candida albicans. , 2004, Trends in microbiology.

[19]  J. Lopez-Ribot,et al.  Engineered Control of Cell Morphology In Vivo Reveals Distinct Roles for Yeast and Filamentous Forms of Candida albicans during Infection , 2003, Eukaryotic Cell.

[20]  Alistair J. P. Brown,et al.  Fungal morphogenesis and host invasion. , 2002, Current opinion in microbiology.

[21]  C. Sánchez-Martínez,et al.  Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis--similar inputs, different outputs. , 2001, Current opinion in microbiology.

[22]  H. Jiang,et al.  RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Schwob,et al.  The ‘SUN’ family: yeast SUN4/SCW3 is involved in cell septation , 2000, Yeast.

[24]  Sabine Martin,et al.  Phospholipase C Binds to the Receptor-like GPR1Protein and Controls Pseudohyphal Differentiation inSaccharomyces cerevisiae * , 1999, The Journal of Biological Chemistry.

[25]  G. Fink,et al.  The control of filamentous differentiation and virulence in fungi. , 1998, Trends in cell biology.

[26]  B. Wickes,et al.  Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Dickinson,et al.  'Fusel' alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. , 1996, Microbiology.

[28]  Gerald R. Fink,et al.  Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS , 1992, Cell.

[29]  H. Brunner,et al.  Candida albicans Sun 41 p , a Putative Glycosidase , Is Involved in Morphogenesis , Cell Wall Biogenesis , and Biofilm Formation , 2007 .

[30]  Brice Enjalbert,et al.  Global Roles of Ssn 6 in Tup 1-and Nrg 1-dependent Gene Regulation in the Fungal Pathogen , Candida albicans □ , 2005 .

[31]  J. Heitman,et al.  Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. , 2000, Molecular biology of the cell.

[32]  Gapped BLAST and PSI-BLAST: A new , 1997 .