ARCq: a new adaptive regularization by cubics
暂无分享,去创建一个
[1] Serge Gratton,et al. Recursive Trust-Region Methods for Multiscale Nonlinear Optimization , 2008, SIAM J. Optim..
[2] S. H. Cheng,et al. A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization , 1998, SIAM J. Matrix Anal. Appl..
[3] Roger Fletcher,et al. Practical methods of optimization; (2nd ed.) , 1987 .
[4] Philippe L. Toint. Nonlinear stepsize control, trust regions and regularizations for unconstrained optimization , 2013, Optim. Methods Softw..
[5] Nicholas I. M. Gould,et al. On the Complexity of Steepest Descent, Newton's and Regularized Newton's Methods for Nonconvex Unconstrained Optimization Problems , 2010, SIAM J. Optim..
[6] Iain Dunning,et al. Computing in Operations Research Using Julia , 2013, INFORMS J. Comput..
[7] J. Nocedal,et al. The modified absolute-value factorization norm for trust-region minimization , 1998 .
[8] Nicholas I. M. Gould,et al. Trust Region Methods , 2000, MOS-SIAM Series on Optimization.
[9] Jorge J. Moré,et al. Computing a Trust Region Step , 1983 .
[10] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[11] J. Ortega. Numerical Analysis: A Second Course , 1974 .
[12] Nicholas I. M. Gould,et al. Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity , 2011, Math. Program..
[13] Ya-xiang Yuan,et al. On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization , 2015, Math. Program..
[14] Yurii Nesterov,et al. Cubic regularization of Newton method and its global performance , 2006, Math. Program..
[15] Nicholas I. M. Gould,et al. Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results , 2011, Math. Program..
[16] José Mario Martínez,et al. Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models , 2017, Math. Program..
[17] Daniel P. Robinson,et al. A trust region algorithm with a worst-case iteration complexity of O(ϵ-3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{docume , 2016, Mathematical Programming.