Integrated genomic analysis reveals aberrations in WNT signaling in germ cell tumors of childhood and adolescence

[1]  L. Looijenga,et al.  Human germ cell tumours from a developmental perspective , 2019, Nature Reviews Cancer.

[2]  He Zhang,et al.  DEFOR: depth- and frequency-based somatic copy number alteration detector , 2019, Bioinform..

[3]  L. Looijenga,et al.  Molecular heterogeneity and early metastatic clone selection in testicular germ cell cancer development , 2018, British Journal of Cancer.

[4]  Joshua M. Stuart,et al.  Integrated Molecular Characterization of Testicular Germ Cell Tumors , 2018, Cell reports.

[5]  H. Clevers,et al.  Wnt/β-catenin signaling in adult mammalian epithelial stem cells. , 2017, Developmental biology.

[6]  S. Gabriel,et al.  Genomic evolution and chemoresistance in germ-cell tumours , 2016, Nature.

[7]  P. S. Klein,et al.  Wnt Signaling in Normal and Malignant Stem Cells , 2016, Current Stem Cell Reports.

[8]  L. Vermeulen,et al.  Wnt Signaling in Cancer Stem Cell Biology , 2016, Cancers.

[9]  A. Olshen,et al.  Development and Validation of a Gene-Based Model for Outcome Prediction in Germ Cell Tumors Using a Combined Genomic and Expression Profiling Approach , 2015, PloS one.

[10]  Jing Sun,et al.  Stem cell protein Piwil1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition , 2015, BMC Cancer.

[11]  X. Wan,et al.  Piwil1 causes epigenetic alteration of PTEN gene via upregulation of DNA methyltransferase in type I endometrial cancer. , 2015, Biochemical and biophysical research communications.

[12]  R. Lothe,et al.  Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages12 , 2015, Neoplasia.

[13]  S. Seal,et al.  Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours , 2015, Nature Communications.

[14]  M. Azim Surani,et al.  SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate , 2015, Cell.

[15]  Michael Kahn,et al.  Can we safely target the WNT pathway? , 2014, Nature Reviews Drug Discovery.

[16]  Gabor T. Marth,et al.  Novel somatic and germline mutations in intracranial germ cell tumours , 2014, Nature.

[17]  D. Yamamoto,et al.  Btk29A Promotes Wnt4 Signaling in the Niche to Terminate Germ Cell Proliferation in Drosophila , 2014, Science.

[18]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[19]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[20]  P. Laird,et al.  Low-level processing of Illumina Infinium DNA Methylation BeadArrays , 2013, Nucleic acids research.

[21]  L. Liau,et al.  Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation , 2013, Nature Genetics.

[22]  R. Moon,et al.  WNT signalling pathways as therapeutic targets in cancer , 2012, Nature Reviews Cancer.

[23]  Francesco Marabita,et al.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data , 2012, Bioinform..

[24]  M. Katoh,et al.  Function and cancer genomics of FAT family genes , 2012, International journal of oncology.

[25]  K. McGlynn,et al.  Gonadal and extragonadal germ cell tumours in the United States, 1973-2007. , 2012, International journal of andrology.

[26]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[27]  L. Qu,et al.  β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway , 2012, Oncogene.

[28]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[29]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[30]  Dan Wang,et al.  IMA: an R package for high-throughput analysis of Illumina's 450K Infinium methylation data , 2012, Bioinform..

[31]  Christopher A. Miller,et al.  VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. , 2012, Genome research.

[32]  D. Rakheja,et al.  Bone morphogenetic protein signalling activity distinguishes histological subsets of paediatric germ cell tumours. , 2011, International journal of andrology.

[33]  D. Rakheja,et al.  Mutation in the type IB bone morphogenetic protein receptor alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish , 2011, Proceedings of the National Academy of Sciences.

[34]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[35]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[36]  Cole Trapnell,et al.  Improving RNA-Seq expression estimates by correcting for fragment bias , 2011, Genome Biology.

[37]  B. Draper,et al.  The ziwi promoter drives germline‐specific gene expression in zebrafish , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[38]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[39]  Deborah Hughes,et al.  Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer , 2010, Nature Genetics.

[40]  J. Amatruda,et al.  Identification of a heritable model of testicular germ cell tumor in the zebrafish. , 2009, Zebrafish.

[41]  M. Stratton,et al.  Somatic KIT mutations occur predominantly in seminoma germ cell tumors and are not predictive of bilateral disease: Report of 220 tumors and review of literature , 2008, Genes, chromosomes & cancer.

[42]  S. Kitazawa,et al.  KIT and RAS signalling pathways in testicular germ cell tumours: new data and a review of the literature. , 2007, International journal of andrology.

[43]  John D Boice,et al.  Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. , 2005, Journal of the National Cancer Institute.

[44]  L. Looijenga,et al.  Testicular germ-cell tumours in a broader perspective , 2005, Nature Reviews Cancer.

[45]  Ajamete Kaykas,et al.  WNT and β-catenin signalling: diseases and therapies , 2004, Nature Reviews Genetics.

[46]  P. V. van Buul,et al.  DNA Double-Strand Breaks and γ-H2AX Signaling in the Testis1 , 2003 .

[47]  L. Strong,et al.  Germ cell tumours in neonates and infants: a distinct subgroup? , 2003, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[48]  L. Looijenga,et al.  Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas , 2002, Oncogene.

[49]  M. Fritsch,et al.  Genetic analysis of childhood germ cell tumors with comparative genomic hybridization. , 2001, Klinische Padiatrie.

[50]  Hans Clevers,et al.  Activation of β-Catenin-Tcf Signaling in Colon Cancer by Mutations in β-Catenin or APC , 1997, Science.

[51]  S. Rodenhuis,et al.  N‐ and KRAS mutations in primary testicular germ cell tumors: Incidence and possible biological implications , 1995, Genes, chromosomes & cancer.

[52]  V. Reuter,et al.  Detection of preferential NRAS mutations in human male germ cell tumors by the polymerase chain reaction , 1990, Genes, chromosomes & cancer.

[53]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..

[54]  J. Townsend,et al.  NIH Public Access Author Manuscript , 2006 .