Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila

In Drosophila, most individual olfactory receptor neurons (ORNs) project bilaterally to both sides of the brain. Having bilateral rather than unilateral projections may represent a useful redundancy. However, bilateral ORN projections to the brain should also compromise the ability to lateralize odours. Nevertheless, walking or flying Drosophila reportedly turn towards the antenna that is more strongly stimulated by odour. Here we show that each ORN spike releases approximately 40% more neurotransmitter from the axon branch ipsilateral to the soma than from the contralateral branch. As a result, when an odour activates the antennae asymmetrically, ipsilateral central neurons begin to spike a few milliseconds before contralateral neurons, and at a 30 to 50% higher rate than contralateral neurons. We show that a walking fly can detect a 5% asymmetry in total ORN input to its left and right antennal lobes, and can turn towards the odour in less time than it requires the fly to complete a stride. These results demonstrate that neurotransmitter release properties can be tuned independently at output synapses formed by a single axon onto two target cells with identical functions and morphologies. Our data also show that small differences in spike timing and spike rate can produce reliable differences in olfactory behaviour.

[1]  E. Yaksi,et al.  Cell Death Triggers Olfactory Circuit Plasticity via Glial Signaling in Drosophila , 2011, The Journal of Neuroscience.

[2]  Charlotte Flügge,et al.  Geruchliche Raumorientierung von Drosophila melanogaster , 1934, Zeitschrift für vergleichende Physiologie.

[3]  J. Kennedy,et al.  LABORATORY OBSERVATIONS ON LOCUST RESPONSES TO WIND‐BORNE GRASS ODOUR , 1969 .

[4]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[5]  Dawnis M. Chow,et al.  Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight , 2009, Current Biology.

[6]  H. Martin Osmotropotaxis in the Honey-Bee , 1965, Nature.

[7]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[8]  Alexander Borst,et al.  Osmotropotaxis inDrosophila melanogaster , 1982, Journal of comparative physiology.

[9]  Veronica Rodrigues Spatial coding of olfactory information in the antennal lobe of Drosophila melanogaster , 1988, Brain Research.

[10]  John Tyler Bonner,et al.  Morphogenesis , 1965, The Physics of Living Matter: Space, Time and Information.

[11]  Rachel I. Wilson,et al.  Origins of correlated activity in an olfactory circuit , 2009, Nature Neuroscience.

[12]  Kendal Broadie,et al.  Living synaptic vesicle marker: Synaptotagmin‐GFP , 2002, Genesis.

[13]  L. Luo,et al.  Temporal Target Restriction of Olfactory Receptor Neurons by Semaphorin-1a/PlexinA-Mediated Axon-Axon Interactions , 2007, Neuron.

[14]  Liqun Luo,et al.  Wiring Stability of the Adult Drosophila Olfactory Circuit after Lesion , 2006, The Journal of Neuroscience.

[15]  Pavan Ramdya,et al.  Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems , 2011, The Journal of Neuroscience.

[16]  L. Luo,et al.  Diversity and Wiring Variability of Olfactory Local Interneurons in the Drosophila Antennal Lobe , 2010, Nature Neuroscience.

[17]  Liqun Luo,et al.  Target neuron prespecification in the olfactory map of Drosophila , 2001, Nature.

[18]  John R. Carlson,et al.  Coding of Odors by a Receptor Repertoire , 2006, Cell.

[19]  Feng Zhang,et al.  Nociceptive Neurons Protect Drosophila Larvae from Parasitoid Wasps , 2007, Current Biology.

[20]  W. Hangartner Spezifität und Inaktivierung des Spurpheromons von Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld , 1967, Zeitschrift für vergleichende Physiologie.

[21]  A. Borst,et al.  Neuronal architecture of the antennal lobe in Drosophila melanogaster , 1990, Cell and Tissue Research.

[22]  E. Isacoff,et al.  Specializations of a pheromonal glomerulus in the Drosophila olfactory system. , 2011, Journal of neurophysiology.

[23]  Leslie B. Vosshall,et al.  Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in Drosophila , 2009, Cell.

[24]  Leslie B. Vosshall,et al.  Genetic and Functional Subdivision of the Drosophila Antennal Lobe , 2005, Current Biology.

[25]  C. McBain,et al.  Differential regulation at functionally divergent release sites along a common axon , 2007, Current Opinion in Neurobiology.

[26]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[27]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[28]  S. Lockery,et al.  Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[30]  Shawn R. Olsen,et al.  Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations , 2007, Nature Neuroscience.

[31]  P. Herzyk,et al.  Functional Correlates of Positional and Gender-Specific Renal Asymmetry in Drosophila , 2012, PloS one.

[32]  Kei Ito,et al.  Drosophila olfactory local interneurons and projection neurons derive from a common neuroblast lineage specified by the empty spiracles gene , 2008, Neural Development.

[33]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[34]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[35]  Michael H. Dickinson,et al.  Olfactory modulation of flight in Drosophila is sensitive, selective and rapid , 2010, Journal of Experimental Biology.

[36]  Kei Ito,et al.  Gamma‐aminobutyric acid (GABA)‐mediated neural connections in the Drosophila antennal lobe , 2009, The Journal of comparative neurology.