Properties of fluid deuterium under double-shock compression to several Mbar

The compressibility of fluid deuterium up to several Mbar has been probed using laser-driven shock waves reflected from a quartz anvil. Combining high-precision (∼1%) shock velocity measurements with the double-shock technique, where differences in equation of state (EOS) models are magnified, has allowed better discrimination between theoretical predictions in the second-shock regime. Double-shock results are in agreement with the stiffer EOS models—which exhibit roughly fourfold single-shock compression—for initial shocks up to 1 Mbar and above 2 Mbar, but diverge from these predictions in between. Softer EOS models—which exhibit sixfold single-shock compression at 1 Mbar—overestimate the reshock pressure for the entire range under study.

[1]  William B. Hubbard,et al.  Theory of Giant Planets , 2002 .

[2]  M. Desjarlais Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing , 2003 .

[3]  M. Knudson,et al.  Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. , 2003, Physical review letters.

[4]  T. Guillot Interiors of giant planets inside and outside the solar system. , 1999, Science.

[5]  J. Kress,et al.  Calculation of a deuterium double shock Hugoniot from ab initio simulations. , 2001, Physical review letters.

[6]  G. V. Simakov,et al.  Shock compression of solid deuterium , 2002 .

[7]  Weber,et al.  Measurements of the equation of state of deuterium at the fluid insulator-metal transition , 1998, Science.

[8]  M. Ross Linear-mixing model for shock-compressed liquid deuterium , 1998 .

[9]  G. W. Collins Equation of State measurements of hydrogen isotopes on Nova , 1997 .

[10]  P. Souers,et al.  Hydrogen Properties for Fusion Energy , 1986 .

[11]  M. Ross,et al.  Shock-Wave Compression of Liquid Deuterium to 0.9 Mbar , 1973 .

[12]  J. Kress,et al.  Density-functional calculation of the Hugoniot of shocked liquid deuterium , 2000 .

[13]  J. Lindl Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .

[14]  Gilbert W. Collins,et al.  Accurate measurement of laser-driven shock trajectories with velocity interferometry , 1998 .

[15]  G. I. Kerley,et al.  Theoretical equation of state for aluminum , 1987 .

[16]  Ross,et al.  Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. , 1995, Physical review. B, Condensed matter.

[17]  W. Nellis,et al.  Equation‐of‐state data for molecular hydrogen and deuterium at shock pressures in the range 2–76 GPa (20–760 kbar)a) , 1983 .

[18]  Wolfgang Windl,et al.  Dynamical and optical properties of warm dense hydrogen , 2001 .

[19]  Ceperley,et al.  Path integral monte carlo calculation of the deuterium hugoniot , 2000, Physical review letters.

[20]  Schmitt,et al.  Reflected shock experiments on the equation-of-state properties of liquid deuterium at 100-600 GPa (1-6 mbar) , 2000, Physical review letters.

[21]  The physics of brown dwarfs , 1998, astro-ph/9902015.

[22]  Liquid metallic hydrogen and the structure of brown dwarfs and giant planets , 1996, astro-ph/9703007.

[23]  R. D. Dick,et al.  Shock compression data for liquids. II. Condensed hydrogen and deuterium , 1980 .

[24]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[25]  R. Trunin,et al.  Shock Compression of Condensed Materials , 1998 .

[26]  M. Knudson,et al.  Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.

[27]  R. Trunin,et al.  Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions , 1994 .

[28]  Gilbert W. Collins,et al.  Absolute equation of state measurements of shocked liquid deuterium up to 200 GPa (2 Mbar) , 1997 .

[29]  G. V. Simakov,et al.  Shock-wave compression of solid deuterium at a pressure of 120 GPa , 2003 .

[30]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[31]  D. Stevenson States of matter in massive planets , 1998 .

[32]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .