Properties of fluid deuterium under double-shock compression to several Mbar
暂无分享,去创建一个
S. J. Moon | David D. Meyerhofer | Jon H. Eggert | T. R. Boehly | Peter M. Celliers | Gilbert W. Collins | Damien G. Hicks | T.J.B. Collins | D. Meyerhofer | T. Boehly | T. Collins | D. Jacobs-Perkins | P. Celliers | D. Hicks | J. Eggert | S. Moon | E. Vianello | E. Vianello | D. Jacobs-Perkins | R. Earley | R. Earley
[1] William B. Hubbard,et al. Theory of Giant Planets , 2002 .
[2] M. Desjarlais. Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing , 2003 .
[3] M. Knudson,et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. , 2003, Physical review letters.
[4] T. Guillot. Interiors of giant planets inside and outside the solar system. , 1999, Science.
[5] J. Kress,et al. Calculation of a deuterium double shock Hugoniot from ab initio simulations. , 2001, Physical review letters.
[6] G. V. Simakov,et al. Shock compression of solid deuterium , 2002 .
[7] Weber,et al. Measurements of the equation of state of deuterium at the fluid insulator-metal transition , 1998, Science.
[8] M. Ross. Linear-mixing model for shock-compressed liquid deuterium , 1998 .
[9] G. W. Collins. Equation of State measurements of hydrogen isotopes on Nova , 1997 .
[10] P. Souers,et al. Hydrogen Properties for Fusion Energy , 1986 .
[11] M. Ross,et al. Shock-Wave Compression of Liquid Deuterium to 0.9 Mbar , 1973 .
[12] J. Kress,et al. Density-functional calculation of the Hugoniot of shocked liquid deuterium , 2000 .
[13] J. Lindl. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .
[14] Gilbert W. Collins,et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry , 1998 .
[15] G. I. Kerley,et al. Theoretical equation of state for aluminum , 1987 .
[16] Ross,et al. Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. , 1995, Physical review. B, Condensed matter.
[17] W. Nellis,et al. Equation‐of‐state data for molecular hydrogen and deuterium at shock pressures in the range 2–76 GPa (20–760 kbar)a) , 1983 .
[18] Wolfgang Windl,et al. Dynamical and optical properties of warm dense hydrogen , 2001 .
[19] Ceperley,et al. Path integral monte carlo calculation of the deuterium hugoniot , 2000, Physical review letters.
[20] Schmitt,et al. Reflected shock experiments on the equation-of-state properties of liquid deuterium at 100-600 GPa (1-6 mbar) , 2000, Physical review letters.
[21] The physics of brown dwarfs , 1998, astro-ph/9902015.
[22] Liquid metallic hydrogen and the structure of brown dwarfs and giant planets , 1996, astro-ph/9703007.
[23] R. D. Dick,et al. Shock compression data for liquids. II. Condensed hydrogen and deuterium , 1980 .
[24] Gilles Chabrier,et al. An Equation of State for Low-Mass Stars and Giant Planets , 1995 .
[25] R. Trunin,et al. Shock Compression of Condensed Materials , 1998 .
[26] M. Knudson,et al. Equation of state measurements in liquid deuterium to 70 GPa. , 2001, Physical review letters.
[27] R. Trunin,et al. Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions , 1994 .
[28] Gilbert W. Collins,et al. Absolute equation of state measurements of shocked liquid deuterium up to 200 GPa (2 Mbar) , 1997 .
[29] G. V. Simakov,et al. Shock-wave compression of solid deuterium at a pressure of 120 GPa , 2003 .
[30] L. M. Barker,et al. Laser interferometer for measuring high velocities of any reflecting surface , 1972 .
[31] D. Stevenson. States of matter in massive planets , 1998 .
[32] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .