Trichoderma reesei RUT-C30--thirty years of strain improvement.

The hypersecreting mutant Trichoderma reesei RUT-C30 (ATCC 56765) is one of the most widely used strains of filamentous fungi for the production of cellulolytic enzymes and recombinant proteins, and for academic research. The strain was obtained after three rounds of random mutagenesis of the wild-type QM6a in a screening program focused on high cellulase production and catabolite derepression. Whereas RUT-C30 achieves outstanding levels of protein secretion and high cellulolytic activity in comparison to the wild-type QM6a, recombinant protein production has been less successful. Here, we bring together and discuss the results from biochemical-, microscopic-, genomic-, transcriptomic-, glycomic- and proteomic-based research on the RUT-C30 strain published over the last 30 years.

[1]  P. Herdewijn,et al.  NMR evidence for a novel asparagine‐linked oligosaccharide on cellobiohydrolase I from Trichoderma reesei RUTC 30 , 1997, FEBS letters.

[2]  N. Martins,et al.  Cell signaling pathways in Paracoccidioides brasiliensis--inferred from comparisons with other fungi. , 2005, Genetics and molecular research : GMR.

[3]  Baojie Li,et al.  Mutation of the Rab6 Homologue of Saccharomyces cerevisiae, YPT6, Inhibits Both Early Golgi Function and Ribosome Biosynthesis* , 1996, The Journal of Biological Chemistry.

[4]  Matthias G. Steiger,et al.  Transformation System for Hypocrea jecorina (Trichoderma reesei) That Favors Homologous Integration and Employs Reusable Bidirectionally Selectable Markers , 2010, Applied and Environmental Microbiology.

[5]  Merja Penttilä,et al.  The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. , 2005, Microbiology.

[6]  Mikko Arvas,et al.  Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae , 2006, BMC Genomics.

[7]  M. Mandels,et al.  Cellulase production by a new mutant strain of Trichoderma reesei MCG77 , 1978 .

[8]  T. Gerngross,et al.  Advances in the production of human therapeutic proteins in yeasts and filamentous fungi , 2004, Nature Biotechnology.

[9]  M. Penttilä,et al.  Genetic Modification of Carbon Catabolite Repression in Trichoderma reesei for Improved Protein Production , 2009, Applied and Environmental Microbiology.

[10]  P. Bergquist,et al.  Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei , 2002, Letters in applied microbiology.

[11]  G. Jan,et al.  Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains , 2008, Biotechnology for biofuels.

[12]  R. Contreras,et al.  In vitro conversion of the carbohydrate moiety of fungal glycoproteins to mammalian-type oligosaccharides--evidence for N-acetylglucosaminyltransferase-I-accepting glycans from Trichoderma reesei. , 1997, European journal of biochemistry.

[13]  B. Pfeifer,et al.  Metabolic flux analysis and pharmaceutical production. , 2010, Metabolic engineering.

[14]  Wendy Schackwitz,et al.  Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing , 2009, Proceedings of the National Academy of Sciences.

[15]  R. Contreras,et al.  Cloning and Characterization of the Glucosidase II Alpha Subunit Gene of Trichoderma reesei: a Frameshift Mutation Results in the Aberrant Glycosylation Profile of the Hypercellulolytic Strain Rut-C30 , 2005, Applied and Environmental Microbiology.

[16]  M. Penttilä,et al.  Protein production and induction of the unfolded protein response in Trichoderma reesei strain Rut-C30 and its transformant expressing endoglucanase I with a hydrophobic tag. , 2005, Biotechnology and bioengineering.

[17]  Christoph Wittmann,et al.  Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties , 2009, BMC Systems Biology.

[18]  B. Montenecourt,et al.  Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations , 1984, Applied Microbiology and Biotechnology.

[19]  M. Penttilä,et al.  Activation mechanisms of the HACI‐mediated unfolded protein response in filamentous fungi , 2003, Molecular microbiology.

[20]  H. Nevalainen,et al.  Expression of xylanase enzymes from thermophilic microorganisms in fungal hosts , 2002, Extremophiles.

[21]  Jarno Kallio,et al.  Increased Production of Xylanase by Expression of a Truncated Version of the xyn11A Gene from Nonomuraea flexuosa in Trichoderma reesei , 2007, Applied and Environmental Microbiology.

[22]  Merja Penttilä,et al.  Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources , 1997 .

[23]  S. Doyle,et al.  Proteomic studies in biomedically and industrially relevant fungi , 2007, Cytotechnology.

[24]  H. Nevalainen,et al.  Expression of Barley Endopeptidase B in Trichoderma reesei , 1997, Applied and Environmental Microbiology.

[25]  Vera Meyer,et al.  Genetic engineering of filamentous fungi--progress, obstacles and future trends. , 2008, Biotechnology advances.

[26]  Reeta Rani Singhania,et al.  Improved Cellulase Production by Trichoderma reesei RUT C30 under SSF Through Process Optimization , 2007, Applied biochemistry and biotechnology.

[27]  P. Bergquist,et al.  Identification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei , 2007, Biotechnology Letters.

[28]  J. Walton,et al.  Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. , 2009, Fungal genetics and biology : FG & B.

[29]  R. Contreras,et al.  In vivo synthesis of complex N‐glycans by expression of human N‐acetylglucosaminyltransferase I in the filamentous fungus Trichoderma reesei , 1999, FEBS letters.

[30]  N. Packer,et al.  The biochemical nature of the cell envelope of a high cellulase-secreting mutant differs from that of the Trichoderma reesei wild type , 1995 .

[31]  B. Ruíz-Díez,et al.  Strategies for the transformation of filamentous fungi , 2002, Journal of applied microbiology.

[32]  J. Cherry,et al.  Directed evolution of industrial enzymes: an update. , 2003, Current opinion in biotechnology.

[33]  M. Raudaskoski,et al.  Expression and Secretion of Barley Cysteine Endopeptidase B and Cellobiohydrolase I in Trichoderma reesei , 1997, Applied and environmental microbiology.

[34]  D. Eveleigh,et al.  Preparation of mutants of Trichoderma reesei with enhanced cellulase production , 1977, Applied and environmental microbiology.

[35]  Markku Saloheimo,et al.  13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose , 2009, BMC Systems Biology.

[36]  M. Mandels,et al.  Enhanced cellulase production by a mutant of Trichoderma viride. , 1971, Applied microbiology.

[37]  M. Mandels,et al.  Cellulases: Biosynthesis and applications , 1980 .

[38]  L. Manczinger,et al.  Somatic cell fusion of Trichoderma reesei resulting in new genetic combinations , 1985, Applied Microbiology and Biotechnology.

[39]  B. Seiboth,et al.  Sequential gene deletions in Hypocrea jecorina using a single blaster cassette , 2005, Current Genetics.

[40]  M Penttilä,et al.  A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. , 1987, Gene.

[41]  H. Nevalainen,et al.  Overexpression of the Aspergillus niger pH 2.5 acid phosphatase gene in a heterologous host Trichoderma reesei. , 1997, Journal of biotechnology.

[42]  M. Penttilä,et al.  A Novel Fungal Expression System: Secretion of Active Calf Chymosin from the Filamentous Fungus Trichoderma Reesei , 1989, Bio/Technology.

[43]  B. K. Ghosh,et al.  Subcellular fractionation of a hypercellulolytic mutant, Trichoderma reesei Rut-C30: localization of endoglucanase in microsomal fraction , 1985, Applied and environmental microbiology.

[44]  R. Schwarz,et al.  Formation of 2-deoxyglucose-containing lipid-linked oligosaccharides. Interference with glycosylation of glycoproteins. , 1978, European journal of biochemistry.

[45]  P. Suominen,et al.  Secretion of the Hormoconis resinae glucoamylase P enzyme from Trichoderma reesei directed by the natural and the cbh1 gene secretion signal. , 1993, FEMS microbiology letters.

[46]  V. Bisaria,et al.  Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products , 1981 .

[47]  B. K. Ghosh,et al.  Cellulase Secretion from a Hypercellulolytic Mutant of Trichoderma Reesei Rut-C30 , 1984 .

[48]  J. Thibault,et al.  Application of image analysis in the fungal fermentation of Trichoderma reesei RUT‐C30 , 2011, Biotechnology progress.

[49]  Tianhong Wang,et al.  Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. , 2009, Journal of biotechnology.

[50]  F. Tjerneld,et al.  Fungal cellulolytic enzyme production: A review , 1991 .

[51]  Y. Zhong,et al.  Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei , 2005, Letters in applied microbiology.

[52]  B. Montenecourt Trichoderma reesei cellulases , 1983 .

[53]  Markku Saloheimo,et al.  Expression in Trichoderma reesei and characterisation of a thermostable family 3 beta-glucosidase from the moderately thermophilic fungus Talaromyces emersonii. , 2004, Protein expression and purification.

[54]  M. Tyers,et al.  A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. , 2009, Genes & development.

[55]  H. Lehrach,et al.  A catabolic block does not sufficiently explain how 2-deoxy-d-glucose inhibits cell growth , 2008, Proceedings of the National Academy of Sciences.

[56]  K. Shimizu,et al.  Current status of 13C-metabolic flux analysis and future perspectives , 2010 .

[57]  H. Brody,et al.  RNAi-mediated gene silencing of highly expressed genes in the industrial fungi Trichoderma reesei and Aspergillus niger , 2009 .

[58]  M. Penttilä,et al.  Efficient Production of Antibody Fragments by the Filamentous Fungus Trichoderma reesei , 1993, Bio/Technology.

[59]  Peter Walter,et al.  Functional and Genomic Analyses Reveal an Essential Coordination between the Unfolded Protein Response and ER-Associated Degradation , 2000, Cell.

[60]  K. Réczey,et al.  Effect of pH on cellulase production of Trichoderma ressei RUT C30 , 2004, Applied biochemistry and biotechnology.

[61]  P. Bergquist,et al.  Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system. , 2002, Journal of microbiological methods.

[62]  M. Rey,et al.  Chromosomal and genetic analysis of the electrophoretic karyotype of Trichoderma reesei: mapping of the cellulase and xylanase genes , 1992, Molecular microbiology.

[63]  Bernard Henrissat,et al.  Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) , 2008, Nature Biotechnology.

[64]  M. Ballesteros,et al.  Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes , 2011, Journal of Industrial Microbiology & Biotechnology.

[65]  V. Joutsjoki,et al.  Transformation of Trichoderma reesei with the Hormoconis resinae glucoamylase P (gamP) gene: production of a heterologous glucoamylase by Trichoderma reesei , 1993, Current Genetics.

[66]  E. Record,et al.  Heterologous production of the Piromyces equi cinnamoyl esterase in Trichoderma reesei for biotechnological applications , 2009, Letters in applied microbiology.

[67]  D. Eveleigh,et al.  Semiquantitative Plate Assay for Determination of Cellulase Production by Trichoderma viride , 1977, Applied and environmental microbiology.

[68]  P. Bergquist,et al.  Rapid transformation of high cellulase‐producing mutant strains of Trichoderma reesei by microprojectile bombardment , 2000, Letters in Applied Microbiology.

[69]  H. Nakayashiki,et al.  RNA silencing as a tool for exploring gene function in ascomycete fungi. , 2005, Fungal genetics and biology : FG & B.

[70]  M. Penttilä,et al.  The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30 , 2011, Microbial Cell Factories.

[71]  M. Penttilä,et al.  Functional analysis of the cellobiohydrolase I promoter of the filamentous fungus Trichoderma reesei , 1996, Molecular and General Genetics MGG.

[72]  K. Patil,et al.  Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. , 2009, Metabolic engineering.

[73]  N. Packer,et al.  Glycosylation of acetylxylan esterase from Trichoderma reesei. , 2002, Glycobiology.

[74]  Christian Seibel,et al.  Sexual development in the industrial workhorse Trichoderma reesei , 2009, Proceedings of the National Academy of Sciences.

[75]  J. Kallio,et al.  High-Yield Production of a Bacterial Xylanase in the Filamentous Fungus Trichoderma reesei Requires a Carrier Polypeptide with an Intact Domain Structure , 2003, Applied and Environmental Microbiology.

[76]  D. Eveleigh,et al.  Increased endoplasmic reticulum content of a mutant of Trichoderma reesei (RUT-C30) in relation to cellulase synthesis , 1982 .

[77]  R. Contreras,et al.  Factors influencing glycosylation of Trichoderma reesei cellulases. I: Postsecretorial changes of the O- and N-glycosylation pattern of Cel7A. , 2004, Glycobiology.

[78]  J. Ståhlberg,et al.  Characterization of protein glycoforms with N‐linked neutral and phosphorylated oligosaccharides: studies on the glycosylation of endoglucanase 1 (Cel7B) from Trichoderma reesei , 2001, Biotechnology and applied biochemistry.

[79]  Mark R Marten,et al.  Proteomics of filamentous fungi. , 2007, Trends in biotechnology.

[80]  M. Bailey,et al.  Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy , 2003, Applied Microbiology and Biotechnology.

[81]  J. Grinyer,et al.  Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest , 2011, Mycological Progress.

[82]  M. Penttilä,et al.  Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains , 1992, Current Genetics.

[83]  M. Mandels,et al.  INDUCTION OF CELLULASE IN TRICHODERMA VIRIDE AS INFLUENCED BY CARBON SOURCES AND METALS , 1957, Journal of bacteriology.

[84]  M. Siika‐aho,et al.  Expression of Melanocarpus albomyces laccase in Trichoderma reesei and characterization of the purified enzyme. , 2004, Microbiology.

[85]  R. Contreras,et al.  Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. , 1997, European journal of biochemistry.

[86]  R. González-Fernández,et al.  Proteomics of Plant Pathogenic Fungi , 2010, Journal of biomedicine & biotechnology.

[87]  L. Olsson,et al.  Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30 , 2003 .

[88]  D. Eveleigh,et al.  SELECTIVE SCREENING METHODS FOR THE ISOLATION OF HIGH YIELDING CELLULASE MUTANTS OF TRICHODERMA REESEI , 1979 .

[89]  Lukas Hartl,et al.  The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome , 2008, BMC Genomics.

[90]  M. Penttilä,et al.  Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei , 1996, Applied and environmental microbiology.

[91]  Jay D Keasling,et al.  Developing Aspergillus as a host for heterologous expression. , 2009, Biotechnology advances.

[92]  P. Thibault,et al.  Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry. , 2001, Journal of chromatography. B, Biomedical sciences and applications.

[93]  Monika Schmoll,et al.  Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina , 2009, Biotechnology for biofuels.

[94]  S. C. Hubbard,et al.  Synthesis and processing of asparagine-linked oligosaccharides. , 1981, Annual review of biochemistry.