Clustering of fuzzy data and simultaneous feature selection: A model selection approach

Abstract Fuzzy data occurs frequently in the fields of decision making, social sciences, and control theory. We consider the problem of clustering fuzzy data along with automatic component number detection and feature selection. A model selection criterion called minimum message length is used to address the problem of component number selection. The Bayesian framework can be adopted here, by applying an explicit prior distribution over the parameter values. We discuss both uninformative and informative priors. For the latter, a gradient descent algorithm for automatic optimization of the prior hyper-parameters is presented. The problem of simultaneous feature selection involves ordering the discriminative features according to their relative importance, and at the same time eliminating non-discriminative features. The feature selection problem is also formulated as a parameter estimation problem by extending the concept of feature saliency. Then the estimation can be computed simultaneously with the clustering steps. By combining the clustering, the cluster number detection and the feature selection into one estimation problem, we modified the fuzzy Expectation–Maximization (EM) algorithm to perform all of the estimation. Evaluation criteria are proposed and empirical study results are reported to showcase the efficacy of our proposals.

[1]  J. Bezdek Cluster Validity with Fuzzy Sets , 1973 .

[2]  B. Muthén,et al.  Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study , 2007 .

[3]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[4]  Lei Xu,et al.  Learning Gaussian mixture with automatic model selection: A comparative study on three Bayesian related approaches , 2011 .

[5]  Rajesh N. Davé,et al.  Validating fuzzy partitions obtained through c-shells clustering , 1996, Pattern Recognit. Lett..

[6]  Dan A. Ralescu,et al.  Overview on the development of fuzzy random variables , 2006, Fuzzy Sets Syst..

[7]  C. S. Wallace,et al.  Unsupervised Learning Using MML , 1996, ICML.

[8]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[9]  Pierpaolo D'Urso,et al.  A weighted fuzzy c , 2006, Comput. Stat. Data Anal..

[10]  Pierpaolo D'Urso,et al.  Fuzzy and possibilistic clustering for fuzzy data , 2012, Comput. Stat. Data Anal..

[11]  Thierry Denoeux,et al.  Clustering Fuzzy Data Using the Fuzzy EM Algorithm , 2010, SUM.

[12]  James C. Bezdek,et al.  Optimal Fuzzy Partitions: A Heuristic for Estimating the Parameters in a Mixture of Normal Distributions , 1975, IEEE Transactions on Computers.

[13]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Camille Roth,et al.  Natural Scales in Geographical Patterns , 2017, Scientific Reports.

[15]  Ana Colubi,et al.  Statistical inference about the means of fuzzy random variables: Applications to the analysis of fuzzy- and real-valued data , 2009, Fuzzy Sets Syst..

[16]  Pierpaolo D'Urso,et al.  Exponential distance-based fuzzy clustering for interval-valued data , 2017, Fuzzy Optim. Decis. Mak..

[17]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[18]  David L. Dowe,et al.  Minimum Message Length and Kolmogorov Complexity , 1999, Comput. J..

[19]  Pierpaolo D'Urso,et al.  Midpoint radius self-organizing maps for interval-valued data with telecommunications application , 2011, Appl. Soft Comput..

[20]  Pierpaolo D'Urso,et al.  Self-Organizing Maps for imprecise data , 2014, Fuzzy Sets Syst..

[21]  Thierry Denœux Maximum likelihood estimation from fuzzy data using the EM algorithm , 2011 .

[22]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[23]  Pierpaolo D'Urso,et al.  Fuzzy c-ordered medoids clustering for interval-valued data , 2016, Pattern Recognit..

[24]  Thierry Denoeux,et al.  Clustering and classification of fuzzy data using the fuzzy EM algorithm , 2016, Fuzzy Sets Syst..

[25]  Pierpaolo D'Urso,et al.  Multi-sample test-based clustering for fuzzy random variables , 2009, Int. J. Approx. Reason..

[26]  Anil K. Jain,et al.  Simultaneous feature selection and clustering using mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Lawrence K. Saul,et al.  Large Margin Hidden Markov Models for Automatic Speech Recognition , 2006, NIPS.

[28]  Hermann G. Matthies,et al.  QUANTIFYING UNCERTAINTY: MODERN COMPUTATIONAL REPRESENTATION OF PROBABILITY AND APPLICATIONS , 2007 .

[29]  Rudolf Kruse,et al.  Fuzzy set-theoretic methods in statistics , 1999 .

[30]  Pierpaolo D'Urso,et al.  Robust clustering of imprecise data , 2014 .

[31]  Ana Colubi,et al.  Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data , 2006, Fuzzy Sets Syst..