A Reinforcement Learning Mechanism Responsible for the Valuation of Free Choice

[1]  Anne G E Collins,et al.  Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. , 2014, Psychological review.

[2]  M. Delgado,et al.  The Value of Exercising Control Over Monetary Gains and Losses , 2014, Psychological science.

[3]  S. Floresco,et al.  Dynamic Fluctuations in Dopamine Efflux in the Prefrontal Cortex and Nucleus Accumbens during Risk-Based Decision Making , 2012, The Journal of Neuroscience.

[4]  M. Delgado,et al.  The Inherent Reward of Choice , 2011, Psychological science.

[5]  Charles J. Wilson,et al.  Disinhibition Bursting of Dopaminergic Neurons , 2011, Front. Syst. Neurosci..

[6]  M. Frank,et al.  Dopaminergic Genes Predict Individual Differences in Susceptibility to Confirmation Bias , 2011, The Journal of Neuroscience.

[7]  A. Turken,et al.  The Neural Architecture of the Language Comprehension Network: Converging Evidence from Lesion and Connectivity Analyses , 2011, Front. Syst. Neurosci..

[8]  N. Daw,et al.  Human Reinforcement Learning Subdivides Structured Action Spaces by Learning Effector-Specific Values , 2009, The Journal of Neuroscience.

[9]  Kjell Någren,et al.  C957T polymorphism of dopamine D2 receptor gene affects striatal DRD2 in vivo availability by changing the receptor affinity , 2009, Synapse.

[10]  M. Frank,et al.  Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. , 2009, Nature neuroscience.

[11]  H. A. Orr,et al.  Fitness and its role in evolutionary genetics , 2009, Nature Reviews Genetics.

[12]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[13]  Benedetto De Martino,et al.  How Choice Reveals and Shapes Expected Hedonic Outcome , 2009, The Journal of Neuroscience.

[14]  M. Petrides,et al.  Basal ganglia and frontal involvement in self‐generated and externally‐triggered finger movements in the dominant and non‐dominant hand , 2009, The European journal of neuroscience.

[15]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[16]  Paul Greengard,et al.  A phosphatase cascade by which rewarding stimuli control nucleosomal response , 2008, Nature.

[17]  Adam Kowol The theory of cognitive dissonance By , 2008 .

[18]  Michael J. Frank,et al.  Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning , 2007, Proceedings of the National Academy of Sciences.

[19]  John M. Ennis,et al.  A neurobiological theory of automaticity in perceptual categorization. , 2007, Psychological review.

[20]  Andreas Meyer-Lindenberg,et al.  Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition. , 2007, The Journal of clinical investigation.

[21]  Michael J. Frank,et al.  Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making , 2006, Neural Networks.

[22]  Thomas E. Hazy,et al.  Banishing the homunculus: Making working memory work , 2006, Neuroscience.

[23]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[24]  R. Nussbaum,et al.  Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype , 2005, Nature Neuroscience.

[25]  Michael J. Frank,et al.  Dynamic Dopamine Modulation in the Basal Ganglia: A Neurocomputational Account of Cognitive Deficits in Medicated and Nonmedicated Parkinsonism , 2005, Journal of Cognitive Neuroscience.

[26]  J. Tepper,et al.  Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels , 2004, Neuroscience.

[27]  Michael J. Frank,et al.  By Carrot or by Stick: Cognitive Reinforcement Learning in Parkinsonism , 2004, Science.

[28]  J. Maunsell Neuronal representations of cognitive state: reward or attention? , 2004, Trends in Cognitive Sciences.

[29]  Karl J. Friston,et al.  Dissociable Roles of Ventral and Dorsal Striatum in Instrumental Conditioning , 2004, Science.

[30]  E. Wagenmakers,et al.  AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.

[31]  N. Bown,et al.  The lure of choice , 2003 .

[32]  B. Lipska,et al.  Catechol O-methyltransferase mRNA expression in human and rat brain: evidence for a role in cortical neuronal function , 2003, Neuroscience.

[33]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[34]  M. Karayiorgou,et al.  Brain catecholamine metabolism in catechol‐O‐methyltransferase (COMT)‐deficient mice , 2002, The European journal of neuroscience.

[35]  J. Wickens,et al.  A cellular mechanism of reward-related learning , 2001, Nature.

[36]  D. Schacter,et al.  Do Amnesics Exhibit Cognitive Dissonance Reduction? The Role of Explicit Memory and Attention in Attitude Change , 2001, Psychological science.

[37]  M. Lepper,et al.  The Construction of Preference: When Choice Is Demotivating: Can One Desire Too Much of a Good Thing? , 2006 .

[38]  D. Joel,et al.  The connections of the dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum , 2000, Neuroscience.

[39]  C. Marsden,et al.  What do the basal ganglia do? , 1998, The Lancet.

[40]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[41]  J. Wickens,et al.  Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro , 1996, Neuroscience.

[42]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[43]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .