A Literature Review on Twitter Data Analysis

The widespread and different types of information on Twitter make it one of the most appropriate virtual environments for information monitoring and tracking. In this paper, the authors review different information analysis techniques; starting with the analysis of different hashtags, twitter’s network-topology, event spread over the network, identification of influence, and finally analysis of sentiment. Future research and development work will be addressed.

[1]  Huan Liu,et al.  Twitter Data Analytics , 2013, SpringerBriefs in Computer Science.

[2]  Harith Alani,et al.  Evaluation Datasets for Twitter Sentiment Analysis: A survey and a new dataset, the STS-Gold , 2013, ESSEM@AI*IA.

[3]  Lucila Ohno-Machado,et al.  Natural language processing: an introduction , 2011, J. Am. Medical Informatics Assoc..

[4]  Ari Rappoport,et al.  What's in a hashtag?: content based prediction of the spread of ideas in microblogging communities , 2012, WSDM '12.

[5]  Stefan Stieglitz,et al.  Towards more systematic Twitter analysis: metrics for tweeting activities , 2013 .

[6]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[7]  Ed H. Chi,et al.  Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network , 2010, 2010 IEEE Second International Conference on Social Computing.

[8]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[9]  Shyhtsun Felix Wu,et al.  Measuring message propagation and social influence on Twitter.com , 2013, Int. J. Commun. Networks Distributed Syst..

[10]  G. Sukthankar,et al.  Political Polarization over Global Warming : Analyzing Twitter Data on Climate Change , 2014 .

[11]  Harith Alani,et al.  Semantic Sentiment Analysis of Twitter , 2012, SEMWEB.

[12]  Duncan J. Watts,et al.  Who says what to whom on twitter , 2011, WWW.

[13]  Shilpa Shukla,et al.  On Classifying the Political Sentiment of Tweets , 2011 .

[14]  Marco Toledo Bastos,et al.  What Sticks With Whom? Twitter Follower-Followee Networks and News Classification , 2012, ICWSM 2012.

[15]  Vignesh Prajapati,et al.  Big Data Analytics with R and Hadoop , 2013 .

[16]  Kazem Jahanbakhsh,et al.  The Predictive Power of Social Media: On the Predictability of U.S. Presidential Elections using Twitter , 2014, ArXiv.