Necessary and sufficient conditions for the strategyproofness of irresolute social choice functions

While the Gibbard-Satterthwaite theorem states that every non-dictatorial and resolute, i.e., single-valued, social choice function is manipulable, it was recently shown that a number of appealing irresolute Condorcet extensions are strategyproof according to Kelly's preference extension. In this paper, we study whether these results carry over to stronger preference extensions due to Fishburn and Gärdenfors. For both preference extensions, we provide sufficient conditions for strategyproofness and identify social choice functions that satisfy these conditions, answering a question by Gärdenfors [15] in the affirmative. We also show that some more discriminatory social choice functions fail to satisfy necessary conditions for strategyproofness.

[1]  John Duggan,et al.  Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized , 2000, Soc. Choice Welf..

[2]  Shin Sato On strategy-proof social choice correspondences , 2009, Soc. Choice Welf..

[3]  A. Gibbard Manipulation of Schemes That Mix Voting with Chance , 1977 .

[4]  Allan Gibbard,et al.  Straightforwardness of Game Forms with Lotteries as Outcomes , 1978 .

[5]  E. Maskin Nash Equilibrium and Welfare Optimality , 1999 .

[6]  Bhaskar Dutta Covering sets and a new condorcet choice correspondence , 1988 .

[7]  Felix Brandt,et al.  Minimal stable sets in tournaments , 2008, J. Econ. Theory.

[8]  N. S. K. Hellerstein Voter's Paradox , 1997 .

[9]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[10]  Salvador Barberà,et al.  THE MANIPULATION OF SOCIAL CHOICE MECHANISMS THAT DO NOT LEAVE "TOO MUCH" TO CHANCE' , 1977 .

[11]  S. Barberà Strategy-proof social choice , 2010 .

[12]  Lin Zhou,et al.  Multi-valued strategy-proof social choice rules , 2002, Soc. Choice Welf..

[13]  Alan D. Taylor,et al.  Social choice and the mathematics of manipulation , 2005 .

[14]  I. Good A note on condorcet sets , 1971 .

[15]  Joaquín Pérez Ortega,et al.  An extension of the Moulin No Show Paradox for voting correspondences , 2009, Soc. Choice Welf..

[16]  William S. Zwicker The voters' paradox, spin, and the Borda count , 1991 .

[17]  Salvador Barberà,et al.  A Note on Group Strategy-Proof Decision Schemes , 1979 .

[18]  Felix Brandt,et al.  Group-Strategyproof Irresolute Social Choice Functions , 2010, IJCAI.

[19]  Andreu Mas-Colell,et al.  General Possibility Theorems for Group Decisions , 1972 .

[20]  Peter C. Fishburn,et al.  Even-chance lotteries in social choice theory , 1972 .

[21]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[22]  William S. Zwicker,et al.  Monotonicity properties and their adaptation to irresolute social choice rules , 2012, Soc. Choice Welf..

[23]  M. Breton,et al.  The Bipartisan Set of a Tournament Game , 1993 .

[24]  J. Pérez The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences , 2001 .

[25]  Allan M. Feldman Manipulation and the Pareto rule , 1979 .

[26]  Bhaskar Dutta,et al.  Comparison functions and choice correspondences , 1999 .

[27]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[28]  Masashi Umezawa Coalitionally strategy-proof social choice correspondences and the Pareto rule , 2009, Soc. Choice Welf..

[29]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[30]  Jerry S. Kelly,et al.  STRATEGY-PROOFNESS AND SOCIAL CHOICE FUNCTIONS WITHOUT SINGLEVALUEDNESS , 1977 .

[31]  H. P. Young,et al.  An axiomatization of Borda's rule , 1974 .

[32]  Thomas Schwartz Cyclic tournaments and cooperative majority voting: A solution , 1990 .

[33]  Federico Poloni Of Note , 2009 .

[34]  Salvador Barberà Manipulation of social decision functions , 1977 .

[35]  P. Gärdenfors Manipulation of social choice functions , 1976 .

[36]  J. H. Smith AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .