Necessary and sufficient conditions for the strategyproofness of irresolute social choice functions
暂无分享,去创建一个
[1] John Duggan,et al. Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized , 2000, Soc. Choice Welf..
[2] Shin Sato. On strategy-proof social choice correspondences , 2009, Soc. Choice Welf..
[3] A. Gibbard. Manipulation of Schemes That Mix Voting with Chance , 1977 .
[4] Allan Gibbard,et al. Straightforwardness of Game Forms with Lotteries as Outcomes , 1978 .
[5] E. Maskin. Nash Equilibrium and Welfare Optimality , 1999 .
[6] Bhaskar Dutta. Covering sets and a new condorcet choice correspondence , 1988 .
[7] Felix Brandt,et al. Minimal stable sets in tournaments , 2008, J. Econ. Theory.
[8] N. S. K. Hellerstein. Voter's Paradox , 1997 .
[9] M. Satterthwaite. Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .
[10] Salvador Barberà,et al. THE MANIPULATION OF SOCIAL CHOICE MECHANISMS THAT DO NOT LEAVE "TOO MUCH" TO CHANCE' , 1977 .
[11] S. Barberà. Strategy-proof social choice , 2010 .
[12] Lin Zhou,et al. Multi-valued strategy-proof social choice rules , 2002, Soc. Choice Welf..
[13] Alan D. Taylor,et al. Social choice and the mathematics of manipulation , 2005 .
[14] I. Good. A note on condorcet sets , 1971 .
[15] Joaquín Pérez Ortega,et al. An extension of the Moulin No Show Paradox for voting correspondences , 2009, Soc. Choice Welf..
[16] William S. Zwicker. The voters' paradox, spin, and the Borda count , 1991 .
[17] Salvador Barberà,et al. A Note on Group Strategy-Proof Decision Schemes , 1979 .
[18] Felix Brandt,et al. Group-Strategyproof Irresolute Social Choice Functions , 2010, IJCAI.
[19] Andreu Mas-Colell,et al. General Possibility Theorems for Group Decisions , 1972 .
[20] Peter C. Fishburn,et al. Even-chance lotteries in social choice theory , 1972 .
[21] B. D. Finetti. La prévision : ses lois logiques, ses sources subjectives , 1937 .
[22] William S. Zwicker,et al. Monotonicity properties and their adaptation to irresolute social choice rules , 2012, Soc. Choice Welf..
[23] M. Breton,et al. The Bipartisan Set of a Tournament Game , 1993 .
[24] J. Pérez. The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences , 2001 .
[25] Allan M. Feldman. Manipulation and the Pareto rule , 1979 .
[26] Bhaskar Dutta,et al. Comparison functions and choice correspondences , 1999 .
[27] J. Neumann,et al. Theory of games and economic behavior , 1945, 100 Years of Math Milestones.
[28] Masashi Umezawa. Coalitionally strategy-proof social choice correspondences and the Pareto rule , 2009, Soc. Choice Welf..
[29] A. Gibbard. Manipulation of Voting Schemes: A General Result , 1973 .
[30] Jerry S. Kelly,et al. STRATEGY-PROOFNESS AND SOCIAL CHOICE FUNCTIONS WITHOUT SINGLEVALUEDNESS , 1977 .
[31] H. P. Young,et al. An axiomatization of Borda's rule , 1974 .
[32] Thomas Schwartz. Cyclic tournaments and cooperative majority voting: A solution , 1990 .
[33] Federico Poloni. Of Note , 2009 .
[34] Salvador Barberà. Manipulation of social decision functions , 1977 .
[35] P. Gärdenfors. Manipulation of social choice functions , 1976 .
[36] J. H. Smith. AGGREGATION OF PREFERENCES WITH VARIABLE ELECTORATE , 1973 .