Adaptive frame methods for nonlinear variational problems

In this paper we develop adaptive numerical solvers for certain nonlinear variational problems. The discretization of the variational problems is done by a suitable frame decomposition of the solution, i.e., a complete, stable, and redundant expansion. The discretization yields an equivalent nonlinear problem on the space of frame coefficients. The discrete problem is then adaptively solved using approximated nested fixed point and Richardson type iterations. We investigate the convergence, stability, and optimal complexity of the scheme. A theoretical advantage, for example, with respect to adaptive finite element schemes is that convergence and complexity results for the latter are usually hard to prove. The use of frames is further motivated by their redundancy, which, at least numerically, has been shown to improve the conditioning of the discretization matrices. Also frames are usually easier to construct than Riesz bases. We present a construction of divergence-free wavelet frames suitable for applications in fluid dynamics and magnetohydrodynamics.

[1]  Karsten Urban,et al.  On divergence-free wavelets , 1995, Adv. Comput. Math..

[3]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[4]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[5]  A. Meir,et al.  Variational methods for stationary MHD flow under natural interface conditions , 1996 .

[6]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[7]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[8]  Tosio Kato,et al.  Extension and Representation of Divergence-free Vector Fields on Bounded Domains , 2000 .

[9]  A. Meir,et al.  Mixed velocity, stress, current, and potential boundary conditions for stationary MHD flow , 2004 .

[10]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[11]  A. Meir,et al.  Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary , 1999 .

[12]  Karsten Urban,et al.  Divergence-Free Wavelet Analysis of Turbulent Flows , 2000, J. Sci. Comput..

[13]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[14]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[15]  Peter Oswald Frames and Space Splittings in Hilbert Spaces , 2004 .

[16]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[17]  Wolfgang Dahmen,et al.  Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..

[18]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[19]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[20]  Karsten Urban Wavelets in Numerical Simulation - Problem Adapted Construction and Applications , 2002, Lecture Notes in Computational Science and Engineering.

[21]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[22]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[23]  W. Hackbusch Elliptic Differential Equations , 1992 .

[24]  Massimo Fornasier,et al.  Intrinsic Localization of Frames , 2005 .

[25]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[26]  Ronald A. DeVore,et al.  Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.

[27]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.

[28]  Pierre Vandergheynst,et al.  On the exponential convergence of matching pursuits in quasi-incoherent dictionaries , 2006, IEEE Transactions on Information Theory.

[29]  Wolfgang Dahmen,et al.  Fast computation of adaptive wavelet expansions , 2007, Numerische Mathematik.

[30]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods : Basic Concepts and Applications to the Stokes Problem , 2002 .

[31]  M. Fornasier,et al.  Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .

[32]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[33]  Wolfgang Dahmen,et al.  On Fictitious Domain Formulations for Maxwell's Equations , 2003, Found. Comput. Math..

[34]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..

[35]  D. Mitrea On the Extension of Divergence-Free Vector Fields Across Lipschitz Interfaces , 2008 .

[36]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[37]  CohenAlbert,et al.  Adaptive wavelet methods for elliptic operator equations , 2001 .

[38]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[39]  Vladimir N. Temlyakov,et al.  Weak greedy algorithms[*]This research was supported by National Science Foundation Grant DMS 9970326 and by ONR Grant N00014‐96‐1‐1003. , 2000, Adv. Comput. Math..

[40]  Rob P. Stevenson,et al.  An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..

[41]  M. Fornasier,et al.  Nonlinear and adaptive frame approximation schemes for elliptic PDEs: Theory and numerical experiments , 2009 .

[42]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[43]  Massimo Fornasier,et al.  Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..