Adaptive frame methods for nonlinear variational problems
暂无分享,去创建一个
[1] Karsten Urban,et al. On divergence-free wavelets , 1995, Adv. Comput. Math..
[3] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[4] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[5] A. Meir,et al. Variational methods for stationary MHD flow under natural interface conditions , 1996 .
[6] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[7] Joel A. Tropp,et al. Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.
[8] Tosio Kato,et al. Extension and Representation of Divergence-free Vector Fields on Bounded Domains , 2000 .
[9] A. Meir,et al. Mixed velocity, stress, current, and potential boundary conditions for stationary MHD flow , 2004 .
[10] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[11] A. Meir,et al. Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary , 1999 .
[12] Karsten Urban,et al. Divergence-Free Wavelet Analysis of Turbulent Flows , 2000, J. Sci. Comput..
[13] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[14] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[15] Peter Oswald. Frames and Space Splittings in Hilbert Spaces , 2004 .
[16] S. Mallat,et al. Adaptive greedy approximations , 1997 .
[17] Wolfgang Dahmen,et al. Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..
[18] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[19] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[20] Karsten Urban. Wavelets in Numerical Simulation - Problem Adapted Construction and Applications , 2002, Lecture Notes in Computational Science and Engineering.
[21] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[22] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[23] W. Hackbusch. Elliptic Differential Equations , 1992 .
[24] Massimo Fornasier,et al. Intrinsic Localization of Frames , 2005 .
[25] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[26] Ronald A. DeVore,et al. Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.
[27] Wolfgang Dahmen,et al. Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.
[28] Pierre Vandergheynst,et al. On the exponential convergence of matching pursuits in quasi-incoherent dictionaries , 2006, IEEE Transactions on Information Theory.
[29] Wolfgang Dahmen,et al. Fast computation of adaptive wavelet expansions , 2007, Numerische Mathematik.
[30] Wolfgang Dahmen,et al. Adaptive Wavelet Methods : Basic Concepts and Applications to the Stokes Problem , 2002 .
[31] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[32] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[33] Wolfgang Dahmen,et al. On Fictitious Domain Formulations for Maxwell's Equations , 2003, Found. Comput. Math..
[34] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[35] D. Mitrea. On the Extension of Divergence-Free Vector Fields Across Lipschitz Interfaces , 2008 .
[36] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[37] CohenAlbert,et al. Adaptive wavelet methods for elliptic operator equations , 2001 .
[38] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[39] Vladimir N. Temlyakov,et al. Weak greedy algorithms[*]This research was supported by National Science Foundation Grant DMS 9970326 and by ONR Grant N00014‐96‐1‐1003. , 2000, Adv. Comput. Math..
[40] Rob P. Stevenson,et al. An Optimal Adaptive Finite Element Method , 2004, SIAM J. Numer. Anal..
[41] M. Fornasier,et al. Nonlinear and adaptive frame approximation schemes for elliptic PDEs: Theory and numerical experiments , 2009 .
[42] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[43] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..