Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: most probable composition of background Eubacteria

[1]  P. Irwin,et al.  Binding of nontarget microorganisms from food washes to anti-Salmonella and anti-E. coli O157 immunomagnetic beads: minimizing the errors of random sampling in extreme dilute systems , 2008, Analytical and bioanalytical chemistry.

[2]  A. Gehring,et al.  Blocking nonspecific adsorption of native food-borne microorganisms by immunomagnetic beads with iota-carrageenan. , 2004, Carbohydrate research.

[3]  P. Irwin,et al.  A 6×6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli , 2003 .

[4]  Shu-I Tu,et al.  FACTORS AFFECTING THE BACTERIAL CAPTURE EFFICIENCY OF IMMUNO BEADS: A COMPARISON BETWEEN BEADS WITH DIFFERENT SIZE AND DENSITY1 , 2003 .

[5]  P. Irwin,et al.  BUOYANCY‐DEPENDENT IMB·SALMONELLA COMPLEX LOSSES DURING MAGNETIC PHASE SEPARATION1 , 2002 .

[6]  M. Tamplin Growth of Escherichia coli O157:H7 in raw ground beef stored at 10 degrees C and the influence of competitive bacterial flora, strain variation, and fat level. , 2002, Journal of food protection.

[7]  A. Gehring,et al.  IMMUNO‐MAGNETIC BEAD MASS TRANSPORT AND CAPTURE EFFICIENCY AT LOW TARGET CELL DENSITIES IN PHOSPHATE‐BUFFERED SALINE1 , 2002 .

[8]  M. Medina,et al.  Binding of collagen I to Escherichia coli O157:H7 and inhibition by carrageenans. , 2001, International journal of food microbiology.

[9]  Shu-I Tu,et al.  APPLICATIONS OF TIME‐RESOLVED FLUOROIMMUNOASSAY TO DETECT MAGNETIC BEAD CAPTURED ESCHERICHIA COLI O157:H7 , 2001 .

[10]  P. Irwin,et al.  A SIMPLE MAXIMUM PROBABILITY RESOLUTION ALGORITHM FOR MOST PROBABLE NUMBER ANALYSIS USING MICROSOFT EXCEL , 2001 .

[11]  Arben Merkoçi,et al.  New materials for electrochemical sensing III. Beads , 2001 .

[12]  Robert de Levie,et al.  Advanced Excel for Scientific Data Analysis , 2001 .

[13]  P. Fratamico,et al.  IMMUNOMAGNETIC‐ELECTROCHEMILUMINESCENT DETECTION OF E. COLI O157:H7 IN GROUND BEEF1 , 2000 .

[14]  M. Cottrell,et al.  Community Composition of Marine Bacterioplankton Determined by 16S rRNA Gene Clone Libraries and Fluorescence In Situ Hybridization , 2000, Applied and Environmental Microbiology.

[15]  A. Gehring,et al.  Minimum detectable level of Salmonellae using a binomial-based bacterial ice nucleation detection assay (BIND). , 2000, Journal of AOAC International.

[16]  K. Ishihara,et al.  Water-Soluble 2-Methacryloyloxyethyl Phosphorylcholine Copolymer as a Novel Synthetic Blocking Reagent in Immunoassay System , 2000 .

[17]  J. Uknalis,et al.  Detection of Escherichia coli O157:H7 using immunomagnetic capture and luciferin-luciferase ATP measurement , 2000 .

[18]  K. Wisniewski,et al.  Immunoblotting with antiphosphoamino acid antibodies: importance of the blocking solution. , 1999, Analytical biochemistry.

[19]  M. Gottschalk,et al.  Immunomagnetic Isolation of Streptococcus suis Serotypes 2 and 1/2 from Swine Tonsils , 1999, Journal of Clinical Microbiology.

[20]  K. Otto,et al.  Effect of Ionic Strength on Initial Interactions ofEscherichia coli with Surfaces, Studied On-Line by a Novel Quartz Crystal Microbalance Technique , 1999, Journal of bacteriology.

[21]  V. Shmanai Blocking of non-specific sorption in ELISA on formylated polystyrene beads. , 1999, Journal of immunoassay.

[22]  G. Ripabelli,et al.  Evaluation of immunomagnetic separation and plating media for recovery of Salmonella from meat. , 1999, Journal of food protection.

[23]  D. Anderson,et al.  Immunomagnetic separation of cells of the toxic dinoflagellate Alexandrium fundyense from natural plankton samples , 1996 .

[24]  A. Gehring,et al.  Enzyme-linked immunomagnetic electrochemical detection of Salmonella typhimurium. , 1996, Journal of immunological methods.

[25]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[26]  E. Olsen,et al.  IMS: a new selective enrichment technique for detection of Salmonella in foods. , 1994, International journal of food microbiology.

[27]  G. Stewart,et al.  Biochemical and Molecular Characterization of Obesumbacterium proteus, a Common Contaminant of Brewing Yeasts , 1994, Applied and environmental microbiology.

[28]  J. Haycock Polyvinylpyrrolidone as a blocking agent in immunochemical studies. , 1993, Analytical biochemistry.

[29]  C. Kvam,et al.  Application of Magnetic Beads in Bioassays , 1993, Bio/Technology.

[30]  E. Idziak,et al.  Adhesion of meat spoilage bacteria to fat and tendon slices and to glass , 1991 .

[31]  M. Uhlén,et al.  Magnetic separation of DNA , 1989, Nature.

[32]  J. Cannon,et al.  Different blocking agents cause variation in the immunologic detection of proteins transferred to nitrocellulose membranes. , 1985, Journal of immunological methods.

[33]  W. Newhall,et al.  The use of Tween 20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. , 1982, Journal of immunological methods.

[34]  D. J. Brenner,et al.  Kluyvera, a new (redefined) genus in the family Enterobacteriaceae: identification of Kluyvera ascorbata sp. nov. and Kluyvera cryocrescens sp. nov. in clinical specimens , 1981, Journal of clinical microbiology.

[35]  J. D'aoust,et al.  Preenrichment Conditions for Effective Recovery of Salmonella in Foods and Feed Ingredients. , 1979, Journal of food protection.

[36]  J. Guesdon,et al.  Magnetie solid phase enzyme-immunoassay. , 1977, Immunochemistry.

[37]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[38]  Ralph Mitchell,et al.  Mechanism of the Initial Events in the Sorption of Marine Bacteria to Surfaces , 1970 .

[39]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.

[40]  James T. Staley,et al.  Bergey's Manual of Determinative Bacteriology , 1939 .