Deconvolution–convolution treatment on powder diffraction data collected with CuKα X-ray and NiKβ filter

A method to remove small CuKβ peaks and step structures caused by NiK-edge absorption as well as CuKα2 sub-peaks from powder diffraction intensity data measured with Cu-target X-ray source and Ni-foil filter is proposed. The method is based on deconvolution–convolution treatment applying scale transform of abscissa, Fourier transform, and a realistic spectroscopic model for the source X-ray. The validity of the method has been tested by analysis of the powder diffraction data of a standard LaB6 powder (NIST SRM660a) sample, collected with the combination of CuKα X-ray source, Ni-foil Kβ filter, flat powder specimen and one-dimensional Si strip detector. The diffraction intensity data treated with the method have certainly shown background intensity profile without CuKβ peaks and NiK-edge step structures.