Accounting for Parameter Uncertainty in Simulation Input Modeling

We formulate and evaluate a Bayesian approach to probabilistic input modeling for simulation experiments that accounts for the parameter and stochastic uncertainties inherent in most simulations and that yields valid predictive inferences about outputs of interest. We use prior information to construct prior distributions on the parameters of the input processes driving the simulation. Using Bayes' rule, we combine this prior information with the likelihood function of sample data observed on the input processes to compute the posterior parameter distributions. In our Bayesian simulation replication algorithm, we estimate parameter uncertainty by independently sampling new values of the input-model parameters from their posterior distributions on selected simulation runs; and we estimate stochastic uncertainty by performing multiple (conditionally) independent runs with each set of parameter values. We formulate performance measures relevant to both Bayesian and frequentist input-modeling techniques, and we summarize an experimental performance evaluation demonstrating the advantages of the Bayesian approach.

[1]  A. Law,et al.  Relative width sequential confidence intervals for the mean , 1981 .

[2]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[3]  J. Berger,et al.  Testing Precise Hypotheses , 1987 .

[4]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[5]  P. Davies,et al.  Kendall's Advanced Theory of Statistics. Volume 1. Distribution Theory , 1988 .

[6]  Ronald W. Wolff,et al.  Stochastic Modeling and the Theory of Queues , 1989 .

[7]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[8]  Adrian E. Raftery,et al.  Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance , 1995 .

[9]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[10]  C. Robert The Bayesian choice : a decision-theoretic motivation , 1996 .

[11]  J. C. Helton,et al.  Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty , 1997 .

[12]  R. Cheng,et al.  Sensitivity of computer simulation experiments to errors in input data , 1997 .

[13]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[14]  A. Rukhin Bayes and Empirical Bayes Methods for Data Analysis , 1997 .

[15]  R. Cheng,et al.  Two-point methods for assessing variability in simulation output , 1998 .

[16]  Stephen E. Chick Steps to implement Bayesian input distribution selection , 1999, WSC '99.

[17]  Stephen E. Chick,et al.  Input Distribution Selection for Simulation Experiments: Accounting for Input Uncertainty , 2001, Oper. Res..

[18]  James R. Wilson,et al.  Accounting for parameter uncertainty in simulation input modeling , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[19]  F. Zouaoui,et al.  Accounting for Input Uncertainty in Discrete-Event Simulation , 2001 .

[20]  James R. Wilson,et al.  Accounting for input model and parameter uncertainty in simulation , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[21]  Michael R. Chernick,et al.  Variance Components Estimation: Mixed Models, Methodologies and Applications , 2002, Technometrics.

[22]  Russell C. H. Cheng,et al.  Calculation of confidence intervals for simulation output , 2004, TOMC.