Electrochemical methods--important means for fabrication of fluorescent nanoparticles.

Fluorescent nanoparticles have attracted much attention over the last two decades. Due to the size- and composition-dependent optical and electrical properties, fluorescent nanoparticles have been emphasized in electronic, optical and biomedical applications. Till now, many kinds of methods have been developed to fabricate diverse fluorescent nanoparticles, which include pyrolysis, template synthesis, hydrothermal synthesis, microemulsion, electrochemical methods and so on. Among them, electrochemical methods are favored for relatively good controllability, ease of operation and mild reaction conditions. By adjusting the applied potential, current, components of the electrolyte and other relevant parameters, the fluorescent nanoparticles could be electrochemically manufactured with tunable sizes, compositions and surface structure, which allows for the modification of electronic and optical properties. Therefore, electrochemical methods are regarded as important means in preparing fluorescent nanoparticles. This review focuses on the recent progress in electrochemical fabrications of fluorescent nanoparticles (together with their optical properties and some applications in optoelectronics and biomedicine).

[1]  Ya‐Ping Sun,et al.  Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[2]  Yun Wah Lam,et al.  3C-SiC nanocrystals as fluorescent biological labels. , 2008, Small.

[3]  Grace M. Credo,et al.  Luminescent Colloidal Silicon Suspensions from Porous Silicon , 1992, Science.

[4]  Hui Peng,et al.  Simple Aqueous Solution Route to Luminescent Carbogenic Dots from Carbohydrates , 2009 .

[5]  H. Tan,et al.  The influence of doping on the device characteristics of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors. , 2010, Nanoscale.

[6]  M. Zhang,et al.  Surface manipulation for improving the sensitivity and selectivity of glassy carbon electrodes by electrochemical treatment. , 2009, Biosensors & bioelectronics.

[7]  K. Rajeshwar,et al.  Photoinduced cathodic deposition of CdTe nanoparticles on polycrystalline gold substrate , 2007 .

[8]  Moungi G Bawendi,et al.  Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture. , 2010, Nano letters.

[9]  Xiaogang Peng,et al.  Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. , 2008, Angewandte Chemie.

[10]  N. Nasirizadeh,et al.  Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid , 2005 .

[11]  D. Pang,et al.  Surface structure-related electrochemical behaviors of glassy carbon electrodes , 2008 .

[12]  Martin M. F. Choi,et al.  Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method , 2009 .

[13]  G. Hodes,et al.  PULSED SONOELECTROCHEMICAL SYNTHESIS OF CADMIUM SELENIDE NANOPARTICLES , 1999 .

[14]  Enrico Gratton,et al.  Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy , 2000 .

[15]  R. Li,et al.  An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). , 2007, Journal of the American Chemical Society.

[16]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[17]  P. Chu,et al.  Group IV nanoparticles: synthesis, properties, and biological applications. , 2010, Small.

[18]  M. Sailor,et al.  Photoluminescence‐Based Sensing With Porous Silicon Films, Microparticles, and Nanoparticles , 2009 .

[19]  I. Rubinstein,et al.  Epitaxial electrodeposition of cadmium selenide nanocrystals on gold , 1992 .

[20]  Ya‐Ping Sun,et al.  Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[21]  Jinglin Liu,et al.  Water-soluble fluorescent carbon quantum dots and photocatalyst design. , 2010, Angewandte Chemie.

[22]  J. Warner,et al.  Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. , 2005, The journal of physical chemistry. B.

[23]  H. Abruña,et al.  Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. , 2001, Chemical reviews.

[24]  I. Rubinstein,et al.  Electrodeposited Quantum Dots. 3. Interfacial Factors Controlling the Morphology, Size, and Epitaxy , 1996 .

[25]  Wassana Yantasee,et al.  Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. , 2008, The Analyst.

[26]  D. Pang,et al.  Interaction between room temperature ionic liquid [bmim]BF4 and DNA investigated by electrochemical micromethod. , 2008, The journal of physical chemistry. B.

[27]  Fei Xiao,et al.  Ultrasonic Electrodeposition of Gold−Platinum Alloy Nanoparticles on Ionic Liquid−Chitosan Composite Film and Their Application in Fabricating Nonenzyme Hydrogen Peroxide Sensors , 2009 .

[28]  Brian S. Mitchell,et al.  Mechanochemical Synthesis of Blue Luminescent Alkyl/Alkenyl‐Passivated Silicon Nanoparticles , 2007 .

[29]  F. Kakiuchi,et al.  Palladium-catalyzed aromatic C-H halogenation with hydrogen halides by means of electrochemical oxidation. , 2009, Journal of the American Chemical Society.

[30]  Enrico Gratton,et al.  Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles , 2000 .

[31]  Ya‐Ping Sun,et al.  Carbon dots for optical imaging in vivo. , 2009, Journal of the American Chemical Society.

[32]  N. Nasirizadeh,et al.  Electrochemical behavior of quercetin : Experimental and theoretical studies , 2005 .

[33]  E. Giannelis,et al.  Photoluminescent Carbogenic Dots , 2008 .

[34]  R. Penner Hybrid electrochemical/chemical synthesis of quantum dots. , 2000, Accounts of Chemical Research.

[35]  Michael J Sailor,et al.  Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. , 2011, ACS nano.

[36]  Fan Yang,et al.  Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. , 2009, Chemical communications.

[37]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[38]  Katherine J Odenthal,et al.  An introduction to electrochemical DNA biosensors. , 2007, The Analyst.

[39]  Y. Yang A novel electrochemical preparation of PbS nanoparticles , 2006 .

[40]  R. Penner,et al.  Hybrid Electrochemical/Chemical Synthesis of Supported, Luminescent Semiconductor Nanocrystallites with Size Selectivity: Copper(I) Iodide , 1997 .

[41]  Zhenhui Kang,et al.  A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. , 2007, Journal of the American Chemical Society.

[42]  Chun-yan Liu,et al.  A Novel One‐Step Approach to Synthesize Fluorescent Carbon Nanoparticles , 2010 .

[43]  Hiroyuki Fujita,et al.  Self-assembly method of linearly aligning ZnO quantum dots for a nanophotonic signal transmission device , 2010 .

[44]  M. Bruchez,et al.  Corrigendum: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[45]  K. Rajeshwar,et al.  Photoassisted Deposition of Chalcogenide Semiconductors on the Titanium Dioxide Surface: Mechanistic and Other Aspects , 2004 .

[46]  Mark T. Swihart,et al.  Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum , 2003 .

[47]  Dai-Wen Pang,et al.  Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. , 2008, Chemical communications.

[48]  A. Smith,et al.  UV photodetectors with thin-film Si nanoparticle active medium , 2005, IEEE Transactions on Nanotechnology.

[49]  Howard W. H. Lee,et al.  Characterization of Silicon Nanoparticles Prepared from Porous Silicon , 1994 .

[50]  Meilian Zhao,et al.  Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. , 2009, Biosensors & bioelectronics.

[51]  N. Kamata,et al.  Electroreductive synthesis and optical characterization of silicon nanoparticles , 2001 .

[52]  Y. Lai,et al.  Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles , 2009, Nanotechnology.

[53]  C. Mao,et al.  Fluorescent carbon nanoparticles derived from candle soot. , 2007, Angewandte Chemie.

[54]  Xiaobo Liu,et al.  Development of a Real-Time Resistance Measurement for Vibrio parahaemolyticus Detection by the Lecithin-Dependent Hemolysin Gene , 2013, PloS one.

[55]  S. Morrison,et al.  Anodic properties of n-Si and n-Ge electrodes in HF solution under illumination and in the dark , 1983 .

[56]  Hui Huang,et al.  One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties , 2011 .

[57]  Gary Hodes,et al.  Electrochemistry of nanomaterials , 2001 .

[58]  D. Pang,et al.  Interactions of benzyl viologen with surface-bound single- and double-stranded DNA. , 2000, Analytical chemistry.

[59]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[60]  Kaixue Wang,et al.  Preparation and tunable photoluminescence of carbogenic nanoparticles confined in a microporous magnesium-aluminophosphate. , 2010, Inorganic chemistry.

[61]  Gang-yu Liu,et al.  Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. , 2002, Journal of the American Chemical Society.

[62]  N. Wang,et al.  Electrochemical reduction synthesis of photoluminescent silicon nanocrystals. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[63]  D. Fink,et al.  Electrochemical deposition of PbSe and CdTe nanoparticles onto p-Si(100) wafers and into nanopores in SiO2/Si(100) structure , 2005 .

[64]  R. Penner,et al.  “Multipulse” Electrochemical/Chemical Synthesis of CdS/S Core/Shell Nanocrystals Exhibiting Ultranarrow Photoluminescence Emission Lines , 1999 .

[65]  E. Streltsov,et al.  Photoelectrochemical formation of indium and cadmium selenide nanoparticles through Se electrode precursor , 2004 .

[66]  A. Mohadesi,et al.  Multiwalled carbon nanotube modified with 1-(2-pyridylazo)-2-naphthol for stripping voltammetric determination of Pb(II). , 2010, The Analyst.

[67]  Junyou Yang,et al.  Electrochemical aspects and structure characterization of VA-VIA compound semiconductor Bi2Te3/Sb2Te3 superlattice thin films via electrochemical atomic layer epitaxy. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[68]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[69]  Latha A. Gearheart,et al.  Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. , 2004, Journal of the American Chemical Society.

[70]  Dongqing Wu,et al.  An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. , 2009, Angewandte Chemie.

[71]  Sheila N. Baker,et al.  Luminescent carbon nanodots: emergent nanolights. , 2010, Angewandte Chemie.

[72]  Jonghoon Choi,et al.  Photoassisted tuning of silicon nanocrystal photoluminescence. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[73]  Tae Whan Kim,et al.  Charge trapping in hybrid electroluminescence device containing CdSe/ZnS quantum dots embedded in a conducting poly(N-vinylcarbozole) layer , 2010 .

[74]  T. Shono,et al.  Electroreductive Synthesis of Polysilanes, Polygermanes, and Related Polymers with Magnesium Electrodes(1). , 1999, The Journal of organic chemistry.

[75]  Louis E. Brus,et al.  Electronic Structure and Luminescence of 1.1- and 1.4-nm Silicon Nanocrystals: Oxide Shell versus Hydrogen Passivation , 2003 .

[76]  T. Murphy,et al.  Ultraviolet photoluminescence from 6H silicon carbide nanoparticles , 2008 .

[77]  Ya‐Ping Sun,et al.  Quantum-sized carbon dots for bright and colorful photoluminescence. , 2006, Journal of the American Chemical Society.

[78]  L. Mitas,et al.  Observation of a magic discrete family of ultrabright Si nanoparticles , 2002 .

[79]  L. Canham Nanoscale semiconducting silicon as a nutritional food additive , 2007 .

[80]  C. Fan,et al.  Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. , 2009, Angewandte Chemie.

[81]  P. Chu,et al.  Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. , 2005, Physical review letters.

[82]  Akiyoshi Hoshino,et al.  Water-soluble photoluminescent silicon quantum dots. , 2005, Angewandte Chemie.

[83]  Chunzhong Li,et al.  Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors. , 2011, Chemical communications.

[84]  Heinz-Bernhard Kraatz,et al.  Towards an early diagnosis of HIV infection: an electrochemical approach for detection of HIV-1 reverse transcriptase enzyme. , 2011, The Analyst.

[85]  Jun‐Jie Zhu,et al.  A Novel Method for the Preparation of Lead Selenide: Pulse Sonoelectrochemical Synthesis of Lead Selenide Nanoparticles , 2000 .

[86]  K. Loh,et al.  One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. , 2009, ACS nano.

[87]  M. Anderson,et al.  A Hybrid Electrochemical/Chemical Synthesis of Supported, Luminescent Cadmium Sulfide Nanocrystals , 1997 .

[88]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[89]  R. Penner,et al.  Size-Selective and Epitaxial Electrochemical/Chemical Synthesis of Sulfur-Passivated Cadmium Sulfide Nanocrystals on Graphite , 1998 .

[90]  Michael J Sailor,et al.  Biodegradable luminescent porous silicon nanoparticles for in vivo applications. , 2009, Nature materials.