Transconformations of the SERCA1 Ca-ATPase: a normal mode study.

[1]  S. Lowen The Biophysical Journal , 1960, Nature.

[2]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[3]  N. Go,et al.  Dynamics of a small globular protein in terms of low-frequency vibrational modes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[5]  M. Levitt,et al.  Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. , 1985, Journal of molecular biology.

[6]  N. Green,et al.  Tryptic cleavage inhibits but does not uncouple Ca2+ATPase of sarcoplasmic reticulum. , 1988, European journal of biochemistry.

[7]  Georg E. Schulz,et al.  Domain motions in proteins , 1991, Current Biology.

[8]  Structural modelling of P-type ion pumps. , 1992, Acta physiologica Scandinavica. Supplementum.

[9]  Georg E Schulz Domain motions in proteins , 1992, Current Biology.

[10]  F. Guillain,et al.  Ca2+ binding to sarcoplasmic reticulum ATPase revisited. I. Mechanism of affinity and cooperativity modulation by H+ and Mg2+. , 1993, The Journal of biological chemistry.

[11]  L. Mouawad,et al.  Diagonalization in a mixed basis: A method to compute low‐frequency normal modes for large macromolecules , 1993 .

[12]  J. Rigaud,et al.  H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. , 1993, Biophysical journal.

[13]  H. Sasabe,et al.  Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane , 1993, Nature.

[14]  Ca2+ binding to sarcoplasmic reticulum ATPase revisited. II. Equilibrium and kinetic evidence for a two-route mechanism. , 1993, The Journal of biological chemistry.

[15]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179−5197 , 1996 .

[16]  Y. Sanejouand,et al.  Hinge‐bending motion in citrate synthase arising from normal mode calculations , 1995, Proteins.

[17]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[18]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[19]  J. Møller,et al.  Structural organization, ion transport, and energy transduction of P-type ATPases. , 1996, Biochimica et biophysica acta.

[20]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[21]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[22]  L. Bouneau,et al.  The Cytoplasmic Loop between Putative Transmembrane Segments 6 and 7 in Sarcoplasmic Reticulum Ca2+-ATPase Binds Ca2+ and Is Functionally Important* , 1997, The Journal of Biological Chemistry.

[23]  A. Atilgan,et al.  Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. , 1997, Folding & design.

[24]  David L. Stokes,et al.  Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution , 1998, Nature.

[25]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[26]  K. Hinsen Analysis of domain motions by approximate normal mode calculations , 1998, Proteins.

[27]  S. Deschamps,et al.  The Cytoplasmic Loop Located between Transmembrane Segments 6 and 7 Controls Activation by Ca2+ of Sarcoplasmic Reticulum Ca2+-ATPase* , 1998, The Journal of Biological Chemistry.

[28]  K. Hinsen,et al.  Tertiary and quaternary conformational changes in aspartate transcarbamylase: a normal mode study , 1999, Proteins.

[29]  Luminal dissociation of Ca2+ from the phosphorylated Ca2+-ATPase is sequential and gated by Mg2+. , 1999 .

[30]  R. Duggleby,et al.  Luminal dissociation of Ca2+ from the phosphorylated Ca2+-ATPase is sequential and gated by Mg2+. , 1999, The Biochemical journal.

[31]  K. Hinsen,et al.  Analysis of domain motions in large proteins , 1999, Proteins.

[32]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[33]  D. Stokes,et al.  Modeling a dehalogenase fold into the 8-A density map for Ca(2+)-ATPase defines a new domain structure. , 2000, Biophysical journal.

[34]  Konrad Hinsen The molecular modeling toolkit: A new approach to molecular simulations , 2000 .

[35]  K. Hinsen,et al.  Harmonicity in slow protein dynamics , 2000 .

[36]  Y. Sanejouand,et al.  Building‐block approach for determining low‐frequency normal modes of macromolecules , 2000, Proteins.

[37]  J. East,et al.  The Importance of Carboxyl Groups on the Lumenal Side of the Membrane for the Function of the Ca2+-ATPase of Sarcoplasmic Reticulum* , 2000, The Journal of Biological Chemistry.

[38]  M. Nakasako,et al.  Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution , 2000, Nature.

[39]  Steven Hayward,et al.  Normal Mode Analysis of Biological Molecules , 2001 .

[40]  What the structure of a calcium pump tells us about its mechanism. , 2001, The Biochemical journal.

[41]  Hiroshi Suzuki,et al.  ADP‐insensitive phosphoenzyme intermediate of sarcoplasmic reticulum Ca2+‐ATPase has a compact conformation resistant to proteinase K, V8 protease and trypsin , 2001, FEBS letters.

[42]  C. Toyoshima,et al.  Organization of cytoplasmic domains of sarcoplasmic reticulum Ca2+‐ATPase in E1P and E1ATP states: a limited proteolysis study , 2001, FEBS letters.

[43]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[44]  C. Peinelt,et al.  Kinetics of the Ca(2+), H(+), and Mg(2+) interaction with the ion-binding sites of the SR Ca-ATPase. , 2002, Biophysical journal.

[45]  C. Toyoshima,et al.  Calcium Transport by Sarcoplasmic Reticulum Ca2+-ATPase , 2002, The Journal of Biological Chemistry.

[46]  Hiromi Nomura,et al.  Structural changes in the calcium pump accompanying the dissociation of calcium , 2002, Nature.

[47]  Chen Xu,et al.  A structural model for the catalytic cycle of Ca(2+)-ATPase. , 2002, Journal of molecular biology.

[48]  C. Toyoshima,et al.  Calcium transport by sarcoplasmic reticulum Ca(2+)-ATPase. Role of the A domain and its C-terminal link with the transmembrane region. , 2002, The Journal of biological chemistry.

[49]  Guohui Li,et al.  A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca(2+)-ATPase. , 2002, Biophysical journal.

[50]  Mark Gerstein,et al.  MolMovDB: analysis and visualization of conformational change and structural flexibility , 2003, Nucleic Acids Res..

[51]  D. Stokes,et al.  Structure and function of the calcium pump. , 2003, Annual review of biophysics and biomolecular structure.

[52]  P. Carloni,et al.  Calcium binding to the transmembrane domain of the sarcoplasmic reticulum Ca2+‐ATPase: Insights from molecular modeling , 2002, Proteins.

[53]  K. Hinsen,et al.  The nature of the low-frequency normal modes of the E1Ca form of the SERCA1 Ca2+-ATPase. , 2003, Annals of the New York Academy of Sciences.

[54]  P. L. Jørgensen,et al.  Conformational states of sarcoplasmic reticulum Ca2+-ATPase as studied by proteolytic cleavage , 2005, The Journal of Membrane Biology.