Relaxations of parameterized LMIs with control applications

A wide variety of problems in control system theory fall within the class of parameterized linear matrix inequalities (LMI), that is, LMI whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMI, parameterized LMI (PLMI) feasibility problems involve infinitely many LMI hence are very hard to solve. In this paper, we propose several effective relaxation techniques to replace PLMI by a finite set of LMI. The resulting relaxed feasibility problems thus become convex and hence can be solved by very efficient interior point methods. Applications of these techniques to different problems such as robustness analysis, or linear parameter-varying (LPV) control are then thoroughly discussed.

[1]  D. Siljak Parameter Space Methods for Robust Control Design: A Guided Tour , 1988, 1988 American Control Conference.

[2]  R.T. Reichert,et al.  Robust autopilot design using μ-synthesis , 1990, 1990 American Control Conference.

[3]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[4]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[5]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions for real parametric uncertainty , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[6]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[7]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[8]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[9]  Alan J. Laub,et al.  The LMI control toolbox , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[11]  Stephen P. Boyd,et al.  A primal—dual potential reduction method for problems involving matrix inequalities , 1995, Math. Program..

[12]  G. Scorletti,et al.  Improved linear matrix inequality conditions for gain scheduling , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[13]  Francesco Amato,et al.  Robust and quadratic stability via polytopic set covering , 1995 .

[14]  Anders Helmersson,et al.  Methods for robust gain scheduling , 1995 .

[15]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[16]  K. Uchida,et al.  A new LMI approach to analysis of linear systems with scheduling parameter reduction to finite number of LMI conditions , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[17]  P. T. Thach,et al.  Optimization on Low Rank Nonconvex Structures , 1996 .

[18]  Athanasios Sideris,et al.  H ∞ control with parametric Lyapunov functions , 1997 .

[19]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[20]  H. Tuy Convex analysis and global optimization , 1998 .

[21]  P. Apkarian,et al.  Relaxations of parameterized LMIs with control applications , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[22]  Pierre Apkarian,et al.  Parameterized LMIs in Control Theory , 2000, SIAM J. Control. Optim..