The application of the Gibbs-Bogoliubov-Feynman inequality in mean field calculations for Markov random fields

The Gibbs-Bogoliubov-Feynman (GBF) inequality of statistical mechanics is adopted, with an information-theoretic interpretation, as a general optimization framework for deriving and examining various mean field approximations for Markov random fields (MRF's). The efficacy of this approach is demonstrated through the compound Gauss-Markov (CGM) model, comparisons between different mean field approximations, and experimental results in image restoration.

[1]  W. Davenport Probability and random processes , 1970 .

[2]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[5]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[8]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[10]  Eric Dubois,et al.  Estimation of image motion fields: Bayesian formulation and stochastic solution , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[11]  Wesley E. Snyder,et al.  Range Image Restoration Using Mean Field Annealing , 1988, NIPS.

[12]  Patrick A. Kelly,et al.  Adaptive segmentation of speckled images using a hierarchical random field model , 1988, IEEE Trans. Acoust. Speech Signal Process..

[13]  T. Hebert,et al.  A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. , 1989, IEEE transactions on medical imaging.

[14]  Wesley E. Snyder,et al.  Restoration of piecewise constant images by mean-field annealing , 1989 .

[15]  Rama Chellappa,et al.  Graduated nonconvexity algorithm for image estimation using compound Gauss Markov field models , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[16]  Eric Dubois,et al.  Comparison of stochastic and deterministic solution methods in Bayesian estimation of 2D motion , 1990, Image Vis. Comput..

[17]  John W. Woods,et al.  Simulated annealing in compound Gaussian random fields , 1990, IEEE Trans. Inf. Theory.

[18]  Alan L. Yuille,et al.  Generalized Deformable Models, Statistical Physics, and Matching Problems , 1990, Neural Computation.

[19]  Josiane Zerubia,et al.  Mean field approximation using compound Gauss-Markov random field for edge detection and image restoration , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[20]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[21]  D. M. Titterington,et al.  A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  John W. Woods,et al.  Image restoration by parallel simulated annealing using compound Gauss-Markov models , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[23]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[24]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[26]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[28]  Wesley E. Snyder,et al.  Energy minimization approach to motion estimation , 1992, Signal Process..

[29]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[30]  Jun Zhang,et al.  The application of mean field theory to image motion estimation , 1995, IEEE Trans. Image Process..