Implanted Antennas in Biomedical Telemetry

Biomedical telemetry permits the measurement of physiological signals at a distance, through either wired or wireless communication technologies. One of the latest developments in wireless biomedical telemetry is in the field of implantable medical devices (IMDs). Such devices are implanted inside the patient’s body by means of a surgical operation and can be used for a number of diagnostic, monitoring, and therapeutic applications. Implantable antennas, i.e., antennas which are integrated into RF-enabled IMDs, exhibit numerous challenges in terms of design, fabrication, and testing and are, therefore, currently attracting significant research attention. Contributions from researchers of various disciplines build a rich pool of background information, while highlighting future prospects.

[1]  Yang Hao,et al.  Numerical Characterization and Link Budget Evaluation of Wireless Implants Considering Different Digital Human Phantoms , 2009, IEEE Transactions on Microwave Theory and Techniques.

[2]  Konstantina S. Nikita,et al.  Parametric Study and Design of Implantable PIFAs for Wireless Biotelemetry , 2011, MobiHealth.

[3]  R. W. Lau,et al.  The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. , 1996, Physics in medicine and biology.

[4]  C Gabriel,et al.  The dielectric properties of biological tissues: I. Literature survey. , 1996, Physics in medicine and biology.

[5]  U. Kawoos,et al.  Characterization of Implantable Antennas for Intracranial Pressure Monitoring: Reflection by and Transmission Through a Scalp Phantom , 2008, IEEE Transactions on Microwave Theory and Techniques.

[6]  Chien-Ming Lee,et al.  Bandwidth enhancement of planar inverted‐F antenna for implantable biotelemetry , 2009 .

[7]  Konstantina S. Nikita,et al.  Meandered versus Spiral Novel Miniature PIFAs Implanted in the Human Head: Tuning and Performance , 2011, MobiHealth.

[8]  Cynthia M. Furse Biomedical telemetry: Today's opportunities and challenges , 2009, 2009 IEEE International Workshop on Antenna Technology.

[9]  Yahya Rahmat-Samii,et al.  Planar inverted‐F antennas on implantable medical devices: Meandered type versus spiral type , 2006 .

[10]  Konstantina S. Nikita,et al.  Miniature Implantable Antennas for Biomedical Telemetry: From Simulation to Realization , 2012, IEEE Transactions on Biomedical Engineering.

[11]  E. Topsakal,et al.  Electrical Properties of Rat Skin and Design of Implantable Antennas for Medical Wireless Telemetry , 2009, IEEE Transactions on Antennas and Propagation.

[12]  Chao-Ming Wu,et al.  Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices , 2009 .

[13]  Ching-Hsing Luo,et al.  Compact broadband stacked implantable antenna for biotelemetry with medical devices , 2006, 2006 IEEE Annual Wireless and Microwave Technology Conference.

[14]  Chien-Ming Lee,et al.  Rectenna Application of Miniaturized Implantable Antenna Design for Triple-Band Biotelemetry Communication , 2011, IEEE Transactions on Antennas and Propagation.

[15]  Sudipto Chakraborty,et al.  Fully Wireless Implantable Cardiovascular Pressure Monitor Integrated with a Medical Stent , 2010, IEEE Transactions on Biomedical Engineering.

[16]  Koichi Ito,et al.  Development and characteristics of a biological tissue‐equivalent phantom for microwaves , 2001 .

[17]  Q. Fang,et al.  Hermetic Implantable Antenna Inside Vitreous Humor Simulating Fluid , 2013 .

[18]  C. Gabriel Dielectric properties of biological tissue: Variation with age , 2005, Bioelectromagnetics.

[19]  Duane Wessels,et al.  Implantable pacemakers and defibrillators: device overview & EMI considerations , 2002, 2002 IEEE International Symposium on Electromagnetic Compatibility.

[20]  Anja K. Skrivervik,et al.  3D-Spiral small antenna design and realization for biomedical telemetry in the MICS band , 2009 .

[21]  K. S Guillory,et al.  A 100-channel system for real time detection and storage of extracellular spike waveforms , 1999, Journal of Neuroscience Methods.

[22]  Zhi Ning Chen,et al.  Transmission of RF Signals Between MICS Loop Antennas in Free Space and Implanted in the Human Head , 2009, IEEE Transactions on Antennas and Propagation.

[23]  Clive Parini,et al.  A 31.5 GHz Patch Antenna Design for Medical Implants , 2008 .

[24]  Mohammad Ghavami,et al.  Miniaturized implantable broadband antenna for biotelemetry communication , 2008 .

[25]  C.M. Furse,et al.  Design of implantable microstrip antenna for communication with medical implants , 2004, IEEE Transactions on Microwave Theory and Techniques.

[26]  Asimina Kiourti,et al.  Implantable and ingestible medical devices with wireless telemetry functionalities: A review of current status and challenges , 2014, Bioelectromagnetics.

[27]  J. Wiart,et al.  Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain , 2008, Physics in medicine and biology.

[28]  J. Soler,et al.  Human Body Effects on Implantable Antennas for ISM Bands Applications : Models Comparison and Propagation Losses Study , 2010 .

[29]  Georg Neubauer,et al.  Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz , 2003, Bioelectromagnetics.

[30]  W. Scanlon,et al.  RF performance of a 418-MHz radio telemeter packaged for human vaginal placement , 1997, IEEE Transactions on Biomedical Engineering.

[31]  J. Vanfleteren,et al.  Design of an Implantable Slot Dipole Conformal Flexible Antenna for Biomedical Applications , 2011, IEEE Transactions on Antennas and Propagation.

[32]  Konstantina S. Nikita,et al.  A Broadband Implantable and a Dual-Band On-Body Repeater Antenna: Design and Transmission Performance , 2014, IEEE Transactions on Antennas and Propagation.

[33]  M. Takahashi,et al.  Performances of an Implanted Cavity Slot Antenna Embedded in the Human Arm , 2009, IEEE Transactions on Antennas and Propagation.

[34]  U. Kawoos,et al.  In-Vitro and In-Vivo Trans-Scalp Evaluation of an Intracranial Pressure Implant at 2.4 GHz , 2008, IEEE Transactions on Microwave Theory and Techniques.

[35]  J. Herbertz Comment on the ICNIRP guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998, Health physics.

[36]  Ya-Xiang Yuan,et al.  Optimization theory and methods , 2006 .

[37]  Qiang Fang,et al.  3-layer implantable microstrip antenna optimised for retinal prosthesis system in MICS band , 2011, International Symposium on Bioelectronics and Bioinformations 2011.

[38]  G. Lazzi,et al.  Investigation of a microwave data telemetry link for a retinal prosthesis , 2004, IEEE Transactions on Microwave Theory and Techniques.

[39]  Andreas Springer,et al.  Ultra-Wideband Transceivers for Cochlear Implants , 2005, EURASIP J. Adv. Signal Process..

[40]  Konstantina S. Nikita,et al.  In Vivo Tests of Implantable Antennas in Rats: Antenna Size and Intersubject Considerations , 2013, IEEE Antennas and Wireless Propagation Letters.

[41]  A. Kiourti,et al.  Miniature Scalp-Implantable Antennas for Telemetry in the MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis , 2012, IEEE Transactions on Antennas and Propagation.

[42]  Zahra Noroozi,et al.  Three-Dimensional FDTD Analysis of the Dual-Band Implantable Antenna for Continuous Glucose Monitoring , 2012 .

[43]  Dietmar Kissinger,et al.  Microwave-Based Noninvasive Concentration Measurements for Biomedical Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[44]  S. Curto,et al.  DETUNING STUDY OF IMPLANTABLE ANTENNAS INSIDE THE HUMAN BODY , 2012 .

[45]  Raj Mittra,et al.  COMPACT MICROSTRIP PATCH ANTENNA , 1996 .

[46]  Jafar Keshvari,et al.  Interaction of radio frequency electromagnetic fields and passive metallic implants—A brief review , 2006, Bioelectromagnetics.

[47]  N. Vidal,et al.  Design of a LTCC compact implantable broadband antenna for wireless biotelemetry , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[48]  E. Topsakal,et al.  Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring , 2008, IEEE Transactions on Microwave Theory and Techniques.

[49]  Wentai Liu,et al.  An optimal design methodology for inductive power link with class-E amplifier , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  Tutku Karacolak,et al.  In Vivo Verification of Implantable Antennas Using Rats as Model Animals , 2010, IEEE Antennas and Wireless Propagation Letters.

[51]  Z. Wang,et al.  MICS transceivers: regulatory standards and applications [medical implant communications service] , 2005, Proceedings. IEEE SoutheastCon, 2005..

[52]  M.Z. Azad,et al.  A Miniature Implanted Inverted-F Antenna for GPS Application , 2009, IEEE Transactions on Antennas and Propagation.

[53]  Paolo Dario,et al.  An implantable telemetry platform system for in vivo monitoring of physiological parameters , 2004, IEEE Transactions on Information Technology in Biomedicine.

[54]  Anja K. Skrivervik,et al.  Design strategies for implantable antennas (Invited) , 2011 .

[55]  J.L. Smith,et al.  RF Coupling in a 433-MHz Biotelemetry System for an Artificial Hip , 2009, IEEE Antennas and Wireless Propagation Letters.

[56]  William G. Scanlon,et al.  Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz , 2000, IEEE Transactions on Biomedical Engineering.

[57]  Y. Rahmat-Samii,et al.  Implanted antennas inside a human body: simulations, designs, and characterizations , 2004, IEEE Transactions on Microwave Theory and Techniques.

[58]  T.C. Green,et al.  Architectures for vibration-driven micropower generators , 2004, Journal of Microelectromechanical Systems.

[59]  A. K. Skrivervik,et al.  Design strategies for implantable antennas , 2011, 2011 Loughborough Antennas & Propagation Conference.

[60]  A. Kiourti,et al.  Miniaturization vs gain and safety considerations of implantable antennas for wireless biotelemetry , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[61]  Hussain M. Al-Rizzo,et al.  A miniaturized tunable microstrip antenna for wireless communications with implanted medical devices , 2007, BODYNETS.

[62]  Jian-Zhong Bao,et al.  Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies , 1997 .

[63]  Y. Rahmat-Samii,et al.  SAR reduction of implanted planar inverted F antennas with non-uniform width radiator , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[64]  K. Nikita,et al.  Numerical assessment of the performance of a scalp‐implantable antenna: Effects of head anatomy and dielectric parameters , 2013, Bioelectromagnetics.

[65]  C.M. Furse,et al.  Miniaturized biocompatible microstrip antenna using genetic algorithm , 2005, IEEE Transactions on Antennas and Propagation.

[66]  W. Greatbatch,et al.  History of implantable devices , 1991, IEEE Engineering in Medicine and Biology Magazine.

[67]  A. Kiourti,et al.  A Review of Implantable Patch Antennas for Biomedical Telemetry: Challenges and Solutions [Wireless Corner] , 2012, IEEE Antennas and Propagation Magazine.

[68]  Chao-Ming Wu,et al.  Implantable Broadband Circular Stacked Pifa Antenna for Biotelemetry Communication , 2008 .

[69]  Ahmed A. Kishk,et al.  Embedded Spiral Microstrip Implantable Antenna , 2011 .

[70]  Konstantina S. Nikita,et al.  Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[71]  Oscar Quevedo-Teruel,et al.  Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices , 2010 .

[72]  J. M. Lopez-Villegas,et al.  Design of an implantable broadband antenna for medical telemetry applications , 2013, 2013 7th European Conference on Antennas and Propagation (EuCAP).

[73]  A. Ahlbom Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz) , 1998 .

[74]  Eric Chow,et al.  Implantable RF Medical Devices: The Benefits of High-Speed Communication and Much Greater Communication Distances in Biomedical Applications , 2013, IEEE Microwave Magazine.

[75]  P. H. Peckham,et al.  Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator , 1995 .

[76]  Konstantina S. Nikita,et al.  Implantable Antennas: A Tutorial on Design, Fabrication, and In Vitro\/In Vivo Testing , 2014, IEEE Microwave Magazine.

[77]  M. Shults,et al.  A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors , 1994, IEEE Transactions on Biomedical Engineering.

[78]  Konstantina S. Nikita,et al.  Design of Implantable Antennas for Medical Telemetry: Dependence upon Operation Frequency, Tissue Anatomy, and Implantation Site , 2013, Int. J. Monit. Surveillance Technol. Res..

[79]  R. W. Lau,et al.  The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. , 1996, Physics in medicine and biology.

[80]  A. Kiourti,et al.  Accelerated Design of Optimized Implantable Antennas for Medical Telemetry , 2012, IEEE Antennas and Wireless Propagation Letters.

[81]  Yang Hao,et al.  Antennas and Propagation of Implanted RFIDs for Pervasive Healthcare Applications , 2010, Proceedings of the IEEE.