Probabilistic Teleportation of an Arbitrary Two-Qubit State via Positive Operator-Valued Measurement with Multi Parties

[1]  Leonardo Neves,et al.  Remote state preparation of spatial qubits , 2011, 1108.3594.

[2]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[3]  Zhang Ming,et al.  A New Scheme for Probabilistic Teleportation and Its Potential Applications , 2013 .

[4]  M. S. Zubairy,et al.  Quantum teleportation of four-dimensional qudits , 2010 .

[5]  Yan Feng-li,et al.  Probabilistic Teleportation of an Unknown Two-Particle State with a Four-Particle Pure Entangled State and Positive Operator Valued Measure , 2006 .

[6]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[7]  Hong-Yi Dai,et al.  Control of the quantum open system via quantum generalized measurement (5 pages) , 2006 .

[8]  Ming Zhang,et al.  Two efficient schemes for probabilistic remote state preparation and the combination of both schemes , 2014, Quantum Inf. Process..

[9]  Xihan Li,et al.  Control Power in Perfect Controlled Teleportation via Partially Entangled Channels , 2014, 1410.1196.

[10]  Zhang Ming,et al.  Teleportation of Three-Level Multi-partite Entangled State by a Partial Three-Level Bipartite Entangled State , 2008 .

[11]  Hong-Yi Dai,et al.  Classical communication cost and remote preparation of the four-particle GHZ class state , 2006 .

[12]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[13]  Daoyi Dong,et al.  Multi-party quantum state sharing via various probabilistic channels , 2013, Quantum Inf. Process..

[14]  Jiahua Wei,et al.  A new scheme for probabilistic teleportation and its potential applications , 2012 .

[15]  Jonathan P. Dowling,et al.  Coherent-state optical qudit cluster state generation and teleportation via homodyne detection , 2010, 1012.5872.

[16]  Fengli Yan,et al.  Probabilistic teleportation of unknown two-particle state via POVM , 2005 .

[17]  Xi-Han Li,et al.  Analysis of N-qubit perfect controlled teleportation schemes from the controller's point of view , 2014, 1410.1857.

[18]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[19]  Qiaoyan Wen,et al.  Quantum circuits for controlled teleportation of two-particle entanglement via a W state , 2008 .

[20]  Hong-Yi Dai,et al.  Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state , 2004 .

[21]  Shi Shou-Hua,et al.  Probabilistic Teleportation of an Arbitrary Unknown Two-Qubit State via Positive Operator-Valued Measure and Two Non-maximally Entangled States , 2006 .

[22]  P.-X. Chen,et al.  Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states , 2004 .

[23]  戴宏毅,et al.  Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair , 2003 .

[24]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[25]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[26]  G. Rigolin Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement , 2004, quant-ph/0407219.