Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity

However derived, predictions of global marine species diversity rely on existing real data. All methods, whether based on past rates of species descriptions, on expert opinion, on the fraction of undescribed species in samples collected, or on ratios between taxa in the taxonomic hierarchy, suffer the same limitation. Here we show that infaunal macrofauna (crustaceans and polychaetes) of the lower bathyal depth range are underrepresented among available data and documented results from Australia. The crustacean and polychaete fauna (only partially identified) of the bathyal continental margin of Western Australia comprised 805 species, representing a largely novel and endemic fauna. Overall, 94.6% of crustacean species were undescribed, while 72% of polychaete species were new to the Australian fauna, including all tanaidaceans, amphipods, and cumaceans, as well as most isopods. Most species were rare, and the species accumulation rate showed no sign of reaching an asymptote with increasing area sampled. Similar data are likely for the largely unexplored bathyal regions. This leads us to conclude that the numbers upon which extrapolations to larger areas are based are too low to provide confidence. The Southern Australian and Indo-West Pacific deep-sea regions contribute significantly to global species diversity. These regions and bathyal and abyssal habitats generally are extensive, but are so-far poorly sampled. They appear to be dominated by taxonomically poorly worked and species-rich taxa with limited distributions. The combination of high species richness among infaunal taxa—compared to better known taxa with larger individuals, higher endemism than presently acknowledged because of the presence of cryptic species, the low proportion of described species in these taxa, and the vast extent of unexplored bathyal and abyssal environments—will lead to further accumulation of new species as more and more deep sea regions are explored. It remains to be tested whether ratios of 10 or more undescribed to described species, found in this study for the dominant taxa and for the deep Southern Ocean and the Indo-West Pacific, are replicable in other areas. Our data and similar figures from other remote regions, and the lack of faunal overlap, suggest that Appeltans et al.’s (Current Biology 22:1–14, 2012) estimate that between one-third and two-thirds of the world’s marine fauna is undescribed is low, and that Mora et al.’s (PLoS Biol 9(8):e1001127. doi:10.1371/journal.pbio.1001127, 2011) of 91% is more probable. We conclude that estimates of global species, however made, are based on limited data.

[1]  R. Bamber,et al.  New apseudomorph tanaidaceans (Crustacea: Peracarida: Tanaidacea) from eastern Australia: Apseudidae, Whiteleggiidae, Metapseudidae and Pagurapseudidae , 2007 .

[2]  P. Bouchet,et al.  Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site , 2002 .

[3]  D. Moreira,et al.  Global dispersal and ancient cryptic species in the smallest marine eukaryotes. , 2006, Molecular biology and evolution.

[4]  T. Bakken,et al.  Benthic polychaetes from the northern Mid-Atlantic Ridge between the Azores and the Reykjanes Ridge , 2013 .

[5]  R. Bamber,et al.  A new genus of a new Austral family of paratanaoid tanaidacean (Crustacea: Peracarida: Tanaidacea), with two new species. , 2009 .

[6]  G. Poore,et al.  Morphological, molecular and biogeographic evidence support two new species in the Uroptychus naso complex (Crustacea: Decapoda: Chirostylidae). , 2011, Molecular phylogenetics and evolution.

[7]  J. Wägele,et al.  Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean , 2007 .

[8]  A. Mccallum Decapod crustacean diversity along Australia's western continental margin , 2011 .

[9]  J. M. Levine Composition and Diversity , 2012 .

[10]  Camilo Mora,et al.  The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes , 2008, Proceedings of the Royal Society B: Biological Sciences.

[11]  Roberto Danovaro,et al.  A Census of Marine Biodiversity Knowledge, Resources, and Future Challenges , 2010, PloS one.

[12]  A. Brandt,et al.  Diversity and zoogeography of Antarctic deep-sea Munnopsidae (Crustacea, Isopoda, Asellota) , 2007 .

[13]  J. Wägele,et al.  Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data , 2009, Proceedings of the Royal Society B: Biological Sciences.

[14]  A. Rowden,et al.  A Southern Hemisphere Bathyal Fauna Is Distributed in Latitudinal Bands , 2011, Current Biology.

[15]  M. Raupach,et al.  A species complex within the isopod genus Haploniscus (Crustacea: Malacostraca: Peracarida) from the Southern Ocean deep sea: a morphological and molecular approach , 2008 .

[16]  Tony Rees,et al.  Marine Biodiversity in the Australian Region , 2010, PloS one.

[17]  P. Bouchet,et al.  The challenge of small and rare species in marine biodiversity surveys: microgastropod diversity in a complex tropical coastal environment , 2011, Biodiversity and Conservation.

[18]  M. Schüller,et al.  Global distributional patterns of selected deep-sea Polychaeta (Annelida) from the Southern Ocean , 2007 .

[19]  N. Coleman,et al.  High species richness in the shallow marine waters of south-east Australia , 1997 .

[20]  P. Tyler,et al.  The biodiversity of the deep Southern Ocean benthos , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  L. S. Kornicker Ostracoda (Myodocopina) of the SE Australian Continental Slope, Part 1 , 1994 .

[22]  J. Day A monograph on the Polychaeta of southern Africa / By J.H. Day, &c. , 1967 .

[23]  G. Poore,et al.  Gnathiid Isopods (Crustacea: Isopoda: Gnathiidae), Mostly New, from The Indian Ocean , 2009 .

[24]  A. Brandt,et al.  Composition, abundance and distribution of Peracarida from the Southern Ocean deep sea , 2007 .

[25]  P. Bouchet,et al.  An inordinate fondness for turrids , 2009 .

[26]  R. Bamber,et al.  The Shallow-water Tanaidacea (Arthropoda: Malacostraca: Peracarida) of the Bass Strait, Victoria, Australia (other than the Tanaidae) , 2012 .

[27]  M. Schotte,et al.  New species and records of Flabellifera from the Indian Ocean (Crustacea: Peracarida: Isopoda) , 2002 .

[28]  J. Wägele,et al.  Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda) - a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii , 2006, Antarctic Science.

[29]  M. Rex,et al.  A genetic dimension to deep-sea biodiversity , 1999 .

[30]  T. Shank Seamounts : deep-ocean laboratories of faunal connectivity, evolution, and endemism , 2010 .

[31]  Z. Nagy,et al.  Genetic and Morphological Divergences in the Cosmopolitan Deep-Sea Amphipod Eurythenes gryllus Reveal a Diverse Abyss and a Bipolar Species , 2013, PloS one.

[32]  Camilo Mora,et al.  Comment on “Can We Name Earth’s Species Before They Go Extinct?” , 2013, Science.

[33]  P. Hammond,et al.  Practical Approaches to the Estimation of the Extent of Biodiversity in Speciose Groups , 1994 .

[34]  A. Mcintyre Life in the world's oceans: diversity, distribution, and abundance , 2010 .

[35]  G. Poore,et al.  Composition and diversity of Crustacea Isopoda of the southeastern Australian continental slope , 1994 .

[36]  G. Kendrick,et al.  The Marine Flora and Fauna of Esperance, Western Australia Volume 2 , 2005 .

[37]  G. Poore,et al.  The Agononida incerta species complex unravelled (Crustacea: Decapoda: Anomura: Munididae) , 2012, Zootaxa.

[38]  J. Deming,et al.  Global bathymetric patterns of standing stock and body size in the deep-sea benthos , 2006 .

[39]  Rudy J. Kloser,et al.  Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths) , 2010 .

[40]  D. Rao Comprehensive review of the records of the biota of the Indian Seas and introduction of non‐indigenous species , 2005 .

[41]  C. McClain,et al.  The dynamics of biogeographic ranges in the deep sea , 2010, Proceedings of the Royal Society B: Biological Sciences.

[42]  L. S. Kornicker,et al.  Ostracoda (Myodocopina) of the SE Australian Continental Slope, Part 3 , 1996 .

[43]  P. Lambshead,et al.  Marine nematode deep‐sea biodiversity – hyperdiverse or hype? , 2003 .

[44]  J. Grassle,et al.  Deep-Sea Species Richness: Regional and Local Diversity Estimates from Quantitative Bottom Samples , 1992, The American Naturalist.

[45]  S. Brix,et al.  Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean-Results from the ANDEEP I-III expeditions , 2007 .

[46]  P. Legendre,et al.  Faunal changes and geographic crypticism indicate the occurrence of a biogeographic transition zone along the southern East Pacific Rise , 2011 .

[47]  J. Koslow,et al.  Diversity, density and community structure of the demersal fish fauna of the continental slope off western Australia (20 to 35° S) , 2001 .

[48]  L. Levin,et al.  Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea , 2000 .

[49]  Rachel Przeslawski,et al.  Infaunal biodiversity patterns from Carnarvon Shelf (Ningaloo Reef), Western Australia , 2013 .

[50]  K. Linse,et al.  Diversity and species distribution of polychaetes, isopods and bivalves in the Atlantic sector of the deep Southern Ocean , 2007, Polar Biology.

[51]  B. Fontaine,et al.  21 years of shelf life between discovery and description of new species , 2012, Current Biology.

[52]  G. Anderson,et al.  Diversity of Tanaidacea (Crustacea: Peracarida) in the World's Oceans – How Far Have We Come? , 2012, PloS one.

[53]  A. Rogers,et al.  DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep‐sea environments , 2007 .

[54]  B. Doti,et al.  An inverse latitudinal biodiversity pattern in asellote isopods (Crustacea, Peracarida) from the Southwest Atlantic between 35° and 56°S , 2013, Marine Biodiversity.

[55]  Simon P. Wilson,et al.  Predicting the number of known and unknown species in European seas using rates of description , 2011 .

[56]  Z. Murrell,et al.  Morphological, Molecular, and Biogeographical Variation Within the Imperiled Virginia Spiraea , 2000 .

[57]  B. Kensley Biogeography of the marine Isopoda of the Indian Ocean, with a check-list of species and records , 2001 .

[58]  R. Carney Zonation of deep biota on continental margins , 2005 .

[59]  Jorge Soberón,et al.  Latitudinal Diversity of Sea Anemones (Cnidaria: Actiniaria) , 2013, The Biological Bulletin.

[60]  A. Machordom,et al.  Hidden Mediterranean biodiversity: molecular evidence for a cryptic species complex within the reef building vermetid gastropod Dendropoma petraeum (Mollusca: Caenogastropoda) , 2009 .

[61]  G. Poore,et al.  Decapod Crustacea of the continental margin of southwestern and central Western Australia: preliminary identifications of 524 species from FRV Southern Surveyor voyage SS10-2005 , 2008 .

[62]  W. Eschmeyer,et al.  Marine fish diversity: history of knowledge and discovery (Pisces) , 2010 .

[63]  P. Ng,et al.  The MUSORSTOM-TDSB deep sea benthos exploration programme (1976–2012): an overview of crustacean discoveries and new perspectives on deep-sea zoology and biogeography , 2013 .

[64]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[65]  L. Excoffier,et al.  Bipolar gene flow in deep‐sea benthic foraminifera , 2007, Molecular ecology.

[66]  D. Currie,et al.  Infaunal macroinvertebrate assemblages of the eastern Great Australian Bight: effectiveness of a marine protected area in representing the region's benthic biodiversity , 2009 .

[67]  R. Vrijenhoek Cryptic species, phenotypic plasticity, and complex life histories: Assessing deep-sea faunal diversity with molecular markers , 2009 .

[68]  G. Rouse,et al.  Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida : Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology , 2009 .

[69]  D. Fontaneto,et al.  Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges , 2011 .

[70]  D. Barnes,et al.  Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be , 2007 .

[71]  P. M. Arbizu,et al.  Submarine ridges do not prevent large-scale dispersal of abyssal fauna: A case study of Mesocletodes (Crustacea, Copepoda, Harpacticoida) , 2011 .

[72]  P. Bouchet,et al.  PANGLAO 2004 - INVESTIGATIONS OF THE MARINE SPECIES RICHNESS IN THE PHILIPPINES , 2009 .

[73]  Serge M. Garcia,et al.  Making Marine Life Count: A New Baseline for Policy , 2010, PLoS biology.

[74]  C. Bleidorn,et al.  Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae) as a species complex , 2006, BMC Evolutionary Biology.

[75]  T. Ward,et al.  Decapod crustaceans of the North West Shelf, a tropical continental shelf of North-western Australia , 1988 .

[76]  E. Pante,et al.  Deep-sea octocorals and antipatharians show no evidence of seamount-scale endemism in the NW Atlantic , 2009 .

[77]  Simon P. Wilson,et al.  More taxonomists describing significantly fewer species per unit effort may indicate that most species have been discovered. , 2013, Systematic biology.

[78]  E. McPhee‐Shaw,et al.  High species density patterns in macrofaunal invertebrate communities in the marine benthos , 2011 .

[79]  G. Wilson Local and regional species diversity of benthic Isopoda (Crustacea) in the deep Gulf of Mexico , 2008 .

[80]  R. May Bottoms up for the oceans , 1992, Nature.

[81]  R. Vrijenhoek,et al.  Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments , 1994 .

[82]  F. WilsonG.D.,et al.  Marine species richness , 1993 .

[83]  L. Levin,et al.  Macrofaunal communities and sediment structure across the Pakistan margin Oxygen Minimum Zone, North-East Arabian Sea , 2009 .

[84]  K. I. Ugland,et al.  Coastal and deep-sea benthic diversities compared , 1997 .

[85]  J. Day A monograph on the Polychaeta of southern Africa. Part 2. Sedentaria , 1967 .

[86]  K. I. Ugland,et al.  The species–accumulation curve and estimation of species richness , 2003 .

[87]  C. Griffiths Coastal marine biodiversity in East Africa , 2005 .

[88]  R. May,et al.  Can We Name Earth's Species Before They Go Extinct? , 2013, Science.

[89]  王丽华,et al.  国际生命条形码计划—DNA Barcoding , 2009 .

[90]  T. O’hara,et al.  Environmental predictors of decapod species richness and turnover along an extensive Australian continental margin (13-35° S) , 2013 .

[91]  I. Karanovic Records of the Western Australian Museum , 2008 .

[92]  C. Thompson,et al.  A novel method for estimating the number of species within a region , 2014, Proceedings of the Royal Society B: Biological Sciences.

[93]  A. Brandt Abundance, diversity, and community patterns of Isopoda (Crustacea) in the Weddell Sea and in the Bransfield Strait, Southern Ocean , 2004, Antarctic Science.

[94]  L. Levin,et al.  New Perceptions of Continental Margin Biodiversity , 2010 .

[95]  R. Whittaker Communities and Ecosystems , 1975 .

[96]  N. Bax,et al.  Biogeographical structure and affinities of the marine demersal ichthyofauna of Australia , 2011 .

[97]  Skipton N. C. Woolley,et al.  Fathom out: biogeographical subdivision across the Western Australian continental margin – a multispecies modelling approach , 2013 .

[98]  R. Bastrop,et al.  Cryptic species in marine polychaete and their independent introduction from North America to Europe. , 1998, Molecular biology and evolution.

[99]  M. Raupach,et al.  First insights into the biodiversity and biogeography of the Southern Ocean deep sea , 2007, Nature.

[100]  A. Rowden,et al.  Life on Seamounts , 2010 .

[101]  M. Rex Community Structure in the Deep-Sea Benthos , 1981 .

[102]  Simon P. Wilson,et al.  The Magnitude of Global Marine Species Diversity , 2012, Current Biology.

[103]  N. Knowlton Sibling species in the sea , 1993 .

[104]  I. Guarniero How Many Species Are There on Earth and in the Ocean? (PLOS Biology) , 2014 .

[105]  J. Day A Monograph on the Polychaeta of Southern Africa, 1 Errantia, 2 Sedentaria , 1967 .

[106]  V. Gallardo,et al.  Macrobenthic animal assemblages of the continental margin off Chile (22° to 42°S) , 2005, Journal of the Marine Biological Association of the United Kingdom.

[107]  P. Jäger Asian species of the genera Anahita Karsch 1879, Ctenus Walckenaer 1805 and Amauropelma Raven, Stumkat & Gray 2001(Arachnida: Araneae: Ctenidae) , 2012 .

[108]  Rex,et al.  Deep-Sea Biodiversity , 2009 .

[109]  R. Bamber,et al.  Parapseudid tanaidaceans (Crustacea: Tanaidacea: Apseudomorpha) from Eastern Australia , 2007 .

[110]  C. Mora,et al.  How Many Species Are There on Earth and in the Ocean? , 2011, PLoS biology.

[111]  Guan-Yu Chen,et al.  Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution , 2011, Current Biology.

[112]  B. Vanhoorne,et al.  World Register of Marine Species , 2013 .

[113]  M. Nanajkar,et al.  Macrofaunal diversity in the Central Indian Ocean Basin , 2007 .

[114]  A. Clarke,et al.  LARGE-SCALE BIOGEOGRAPHIC PATTERNS IN MARINE MOLLUSKS: A CONFLUENCE.OF HISTORY AND PRODUCTIVITY? , 2005 .

[115]  Simon P. Wilson,et al.  Predicting total global species richness using rates of species description and estimates of taxonomic effort. , 2012, Systematic biology.