Evolutionary analysis of a complete chicken genome

Significance Chicken is one of the most important vertebrate model organisms, yet its genome is far from complete. This study generated the complete sequence of a chicken genome, uncovering six chromosome models absent in previous genome assemblies. Ten small microchromosomes evolved distinct genomic and epigenetic features, unlike any other vertebrate chromosomes but remain stable and conserved in birds. Most chicken centromeres were found to contain higher-order repeats (HORs), resembling the centromeric organization in primates. The complete chicken chromosome models are useful to reconstruct the karyotype of the vertebrate ancestor. We reveal the evolutionary trajectory of chromosome changes from ancestral chordate to early vertebrate and Amniota through frequent fusion events before and after whole-genome duplications.

[1]  Xiaoping Zhou,et al.  Retrieving the near-complete genome of a threatened bird from wild frozen samples , 2022, bioRxiv.

[2]  Yafei Mao,et al.  Publisher Correction: A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics , 2022, Nature methods.

[3]  Ira M. Hall,et al.  Semi-automated assembly of high-quality diploid human reference genomes , 2022, bioRxiv.

[4]  Zhicao Yue,et al.  Three amphioxus reference genomes reveal gene and chromosome evolution of chordates , 2022, bioRxiv.

[5]  F. Alt,et al.  Ig Enhancers Increase RNA Polymerase II Stalling at Somatic Hypermutation Target Sequences. , 2021, Journal of Immunology.

[6]  S. Edwards,et al.  What Have We Learned from the First 500 Avian Genomes? , 2021, Annual Review of Ecology, Evolution, and Systematics.

[7]  Mitchell R. Vollger,et al.  StainedGlass: Interactive visualization of massive tandem repeat structures with identity heatmaps , 2021, bioRxiv.

[8]  B. Venkatesh,et al.  Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution , 2021, Nature Communications.

[9]  Aaron M. Streets,et al.  Complete genomic and epigenetic maps of human centromeres , 2021, bioRxiv.

[10]  Dapeng Li,et al.  Telomere-to-telomere assembly of a fish Y chromosome reveals the origin of a young sex chromosome pair , 2021, Genome Biology.

[11]  J. Graves,et al.  Microchromosomes are building blocks of bird, reptile, and mammal chromosomes , 2021, Proceedings of the National Academy of Sciences.

[12]  Aaron M. Streets,et al.  The complete sequence of a human genome , 2021, bioRxiv.

[13]  Jiming Jiang,et al.  Chorus2: design of genome‐scale oligonucleotide‐based probes for fluorescence in situ hybridization , 2021, Plant biotechnology journal.

[14]  William T. Harvey,et al.  Segmental duplications and their variation in a complete human genome , 2021, bioRxiv.

[15]  Alison L. Van Eenennaam,et al.  Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research , 2021, Nature Communications.

[16]  Heng Li,et al.  Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm , 2021, Nature Methods.

[17]  E. Jarvis,et al.  A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes , 2021, Genome research.

[18]  Sergey Koren,et al.  Towards complete and error-free genome assemblies of all vertebrate species , 2020, Nature.

[19]  Yuan Jiang,et al.  The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish , 2020, iScience.

[20]  Drew R. Schield,et al.  Microchromosomes Exhibit Distinct Features of Vertebrate Chromosome Structure and Function with Underappreciated Ramifications for Genome Evolution , 2020, Molecular biology and evolution.

[21]  Qi Zhou,et al.  The Female-Specific W Chromosomes of Birds Have Conserved Gene Contents but Are Not Feminized , 2020, Genes.

[22]  Guojie Zhang,et al.  863 genomes reveal the origin and domestication of chicken , 2020, Cell Research.

[23]  Nicholas H. Putnam,et al.  Deeply conserved synteny resolves early events in vertebrate evolution , 2020, Nature Ecology & Evolution.

[24]  L. Hansen,et al.  GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms , 2020, GigaScience.

[25]  Jiang Hu,et al.  NextPolish: a fast and efficient genome polishing tool for long-read assembly , 2019, Bioinform..

[26]  Alexander Suh,et al.  Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise , 2019, bioRxiv.

[27]  N. Yang,et al.  Dynamic Transcriptional Landscape of the Early Chick Embryo , 2019, Front. Cell Dev. Biol..

[28]  Yi Xing,et al.  TideHunter: efficient and sensitive tandem repeat detection from noisy long-reads using seed-and-chain , 2019, Bioinform..

[29]  Jiming Jiang,et al.  Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships , 2019, Proceedings of the National Academy of Sciences.

[30]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[31]  Ali Mortazavi,et al.  TranscriptClean: variant-aware correction of indels, mismatches and splice junctions in long-read transcripts , 2018, Bioinform..

[32]  D. Griffin,et al.  Patterns of microchromosome organization remain highly conserved throughout avian evolution , 2018, Chromosoma.

[33]  Sergey Koren,et al.  De novo assembly of haplotype-resolved genomes with trio binning , 2018, Nature Biotechnology.

[34]  B. Piégu,et al.  But where did the centromeres go in the chicken genome models? , 2018, Chromosome Research.

[35]  Michael N Romanov,et al.  Reconstruction of the diapsid ancestral genome permits chromosome evolution tracing in avian and non-avian dinosaurs , 2018, Nature Communications.

[36]  David Haussler,et al.  Linear assembly of a human centromere on the Y chromosome , 2018, Nature Biotechnology.

[37]  H. Roest Crollius,et al.  Chromosome evolution at the origin of the ancestral vertebrate genome , 2018, bioRxiv.

[38]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[39]  A. Fujiyama,et al.  Constitutive centromere-associated network controls centromere drift in vertebrate cells , 2017, The Journal of cell biology.

[40]  Hans H. Cheng,et al.  A New Chicken Genome Assembly Provides Insight into Avian Genome Structure , 2016, G3: Genes, Genomes, Genetics.

[41]  James T. Robinson,et al.  Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. , 2016, Cell systems.

[42]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[43]  Bronwen L. Aken,et al.  The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons , 2016, Nature Genetics.

[44]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[45]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[46]  A. Krasikova,et al.  Three-dimensional architecture of tandem repeats in chicken interphase nucleus , 2015, Chromosome Research.

[47]  Bronwen L. Aken,et al.  Third Report on Chicken Genes and Chromosomes 2015 , 2015, Cytogenetic and Genome Research.

[48]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[49]  N. Loman,et al.  A complete bacterial genome assembled de novo using only nanopore sequencing data , 2015, Nature Methods.

[50]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[51]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[52]  M. Thomas P. Gilbert,et al.  Complex evolutionary trajectories of sex chromosomes across bird taxa , 2014, Science.

[53]  Andreas R. Pfenning,et al.  Comparative genomics reveals insights into avian genome evolution and adaptation , 2014, Science.

[54]  Denis M Larkin,et al.  Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor , 2014, BMC Genomics.

[55]  W. Earnshaw,et al.  The Centromere: Chromatin Foundation for the Kinetochore Machinery , 2014, Developmental cell.

[56]  A. Fujiyama,et al.  Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly , 2014, Developmental cell.

[57]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[58]  Kiyokazu Agata,et al.  Inference of the Protokaryotypes of Amniotes and Tetrapods and the Evolutionary Processes of Microchromosomes from Comparative Gene Mapping , 2012, PloS one.

[59]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[60]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[61]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[62]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[63]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[64]  Sophie Leroux,et al.  Integrative mapping analysis of chicken microchromosome 16 organization , 2010, BMC Genomics.

[65]  Tetsuya Hori,et al.  Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. , 2010, Genome research.

[66]  Steve Rozen,et al.  Convergent Evolution of Chicken Z and Human X Chromosomes by Expansion and Gene Acquisition , 2010, Nature.

[67]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[68]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[69]  Y. Kohara,et al.  Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. , 2007, Genome research.

[70]  H. Tempest,et al.  The evolution of the avian genome as revealed by comparative molecular cytogenetics , 2007, Cytogenetic and Genome Research.

[71]  M. Pagel,et al.  Origin of avian genome size and structure in non-avian dinosaurs , 2007, Nature.

[72]  S. Galkina,et al.  On the positions of centromeres in chicken lampbrush chromosomes , 2006, Chromosome Research.

[73]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[74]  Doron Lancet,et al.  Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification , 2005, Bioinform..

[75]  Daniel G Peterson,et al.  The repetitive landscape of the chicken genome. , 2004, Genome research.

[76]  M. Matzke,et al.  A 41–42 bp tandemly repeated sequence isolated from nuclear envelopes of chicken erythrocytes is located predominantly on microchromosomes , 1990, Chromosoma.

[77]  Colin N. Dewey,et al.  Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution , 2004, Nature.

[78]  M. Schmid,et al.  Molecular Cytogenetic Definition of the Chicken Genome: The First Complete Avian Karyotype , 2004, Genetics.

[79]  S. Galkina,et al.  Estimation of the Minimal Size of Chicken Gallus gallus domesticusMicrochromosomes via Pulsed-Field Electrophoresis , 2001, Russian Journal of Genetics.

[80]  Thomas Cremer,et al.  Arrangements of macro- and microchromosomes in chicken cells , 2004, Chromosome Research.

[81]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[82]  M. Schartl,et al.  Distribution of telomeric (TTAGGG)n sequences in avian chromosomes , 2002, Chromosoma.

[83]  D. Burt,et al.  Origin and evolution of avian microchromosomes , 2002, Cytogenetic and Genome Research.

[84]  A. Bird,et al.  Chicken microchromosomes are hyperacetylated, early replicating, and gene rich. , 1998, Genome research.