Search for suitable approximation methods for fullerene structure and relative stability studies: case study with C50.

Local density approximation (LDA), several popular general gradient approximation (GGA), hybrid module based density functional theoretical methods: SVWN, BLYP, PBE, HCTH, B3LYP, PBE1PBE, B1LYP, and BHandHLYP, and some nonstandard hybrid methods are applied in geometry prediction for C60 and C70. HCTH with 3-21G basis set is found to be one of the best methods for fullerene structural prediction. In the predictions of relative stability of C50 isomers, PM3 is an efficient method in the first step for sorting out the most stable isomers. HCTH with 3-21G predicts very good geometries for C50, similar to the performance of B3LYP6-31G(d). The gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital from the predictions of all the density functional theory methods has the following descending order: E(gap)(half-and-half hybrid)>E(gap)(B3LYP)>E(gap)(HCTH)(GGA)>E(gap)(SVWN)(LDA).

[1]  R. Taylor,et al.  Lecture Notes on Fullerene Chemistry , 1999 .

[2]  M. Dresselhaus,et al.  Infrared-active modes of C70 , 1994 .

[3]  M. Prato,et al.  Fullerene derivatives: an attractive tool for biological applications. , 2003, European journal of medicinal chemistry.

[4]  D. Muller,et al.  The structure of the C70 molecule , 1992, Nature.

[5]  M. Zerner,et al.  Theoretical studies on the structure and electronic spectra of some isomeric fullerene derivatives C60On (n=2, 3) , 2000 .

[6]  A. Soper,et al.  Molecular structure of the C70 fullerene , 1994 .

[7]  Manuel Alcamí,et al.  Fullerene C50: Sphericity takes over, not strain , 2005 .

[8]  Chia-Chung Sun,et al.  Calculations on the spectra and nonlinear third-order optical susceptibility of c70 , 1994 .

[9]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[10]  Andreas W. M. Dress,et al.  A Constructive Enumeration of Fullerenes , 1997, J. Algorithms.

[11]  T. Crawford,et al.  Conformations of [10]Annulene: More Bad News for Density Functional Theory and Second-Order Perturbation Theory , 1999 .

[12]  Michael J. Frisch,et al.  The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets , 1992 .

[13]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[14]  D. Bethune,et al.  Bond Lengths in Free Molecules of Buckminsterfullerene, C60, from Gas-Phase Electron Diffraction , 1991, Science.

[15]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[16]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[17]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[18]  Paul von Ragué Schleyer,et al.  Properties of fullerene[50] and D5h decachlorofullerene[50]: a computational study. , 2004, Journal of the American Chemical Society.

[19]  A. Daniel Boese,et al.  A new parametrization of exchange–correlation generalized gradient approximation functionals , 2001 .

[20]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[21]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[22]  P. Eklund,et al.  Fullerene Polymers and Fullerene Polymer Composites , 2000 .

[23]  Jerzy Cioslowski,et al.  Electronic Structure Calculations on Fullerenes and Their Derivatives , 1995 .

[24]  D. Bethune,et al.  Molecular Structure of Free Molecules of the Fullerene C70 from Gas-Phase Electron Diffraction , 1997 .

[25]  Xiang Zhao,et al.  On the structure and relative stability of C50 fullerenes. , 2005, The journal of physical chemistry. B.

[26]  Stephan Irle,et al.  Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20–C86 fullerene isomers , 2005 .

[27]  Vincenzo Barone,et al.  Toward reliable adiabatic connection models free from adjustable parameters , 1997 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  P. Pickup,et al.  Design of low band gap polymers employing density functional theory—hybrid functionals ameliorate band gap problem , 1997 .

[30]  Walter Thiel,et al.  Performance of semiempirical methods in fullerene chemistry: relative energies and nucleus-independent chemical shifts , 2003 .

[31]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[32]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[33]  C. Wilkins,et al.  Synthesis of a fullerene derivative for the inhibition of HIV enzymes , 1993 .

[34]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[35]  G. Scuseria,et al.  The meta-GGA functional: Thermochemistry with a kinetic energy density dependent exchange-correlation functional , 2000 .

[36]  M. B. Coolidge,et al.  Semiempirical vibrational and electronic structures of C60 and C70 , 1991 .

[37]  M. Zerner,et al.  Quantum-chemical investigation of Buckminsterfullerene and related carbon clusters (I): The electronic structure and UV spectra of Buckminsterfullerene, and other C60 cages† , 1990 .

[38]  Rodney S. Ruoff,et al.  Fullerenes : chemistry, physics, and technology , 2000 .

[39]  L. T. Scott,et al.  X-ray quality geometries of geodesic polyarenes from theoretical calculations: what levels of theory are reliable? , 2005, The Journal of organic chemistry.

[40]  Z. Slanina,et al.  C100 IPR fullerenes: temperature-dependent relative stabilities based on the Gibbs function , 2004 .

[41]  R. Ahlrichs,et al.  Absolute configuration of D(2)-symmetric fullerene C(84). , 2002, Journal of the American Chemical Society.