Spectral Sets and Factorizations of Finite Abelian Groups

Aspectral setis a subsetΩofRnwith Lebesgue measure 0<μ(Ω)<∞ such that there exists a setΛof exponential functions which form an orthogonal basis ofL2(Ω). The spectral set conjecture of B. Fuglede states that a set 0 is a spectral set if and only ifΩtilesRnby translation. We study setsΩwhich tileRnusing a rational periodic tile set S=Zn+A, where A⊆(1/N1) Z×…×(1/Nn) Zis finite. We characterize geometrically bounded measurable setsΩthat tileRnwith such a tile set. Certain tile sets S have the property that every bounded measurable setΩwhich tilesRnwith S is a spectral set, with a fixed spectrumΛS. We callΛSa universal spectrum for such S. We give a necessary and sufficient condition for a rational periodic setΛto be a universal spectrum for S, which is expressed in terms of factorizationsA⊕B=GwhereG=ZN1×…×ZNn, andA :=A (modZn). In dimensionn=1 we show that S has a universal spectrum wheneverN1is the order of a “good” group in the sense of Hajos, and for various other sets S.

[1]  R. Tijdeman Number Theory: Decomposition of the integers as a direct sum of two subsets , 1995 .

[2]  de Ng Dick Bruijn On the Factorization of Finite Abelian Groups , 1953 .

[3]  Krishnaswami Alladi Number Theory: Decomposition of the integers as a direct sum of two subsets , 1995 .

[4]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[5]  Jeffrey C. Lagarias,et al.  Keller’s cube-tiling conjecture is false in high dimensions , 1992 .

[6]  S. Pedersen Spectral theory of commuting self-adjoint partial differential operators , 1987 .

[7]  Jeffrey C. Lagarias,et al.  Tiling the line with translates of one tile , 1996 .

[8]  A. D. Sands On the factorisation of finite abelian groups. III , 1957 .

[9]  P. Jorgensen Spectral theory of finite volume domains in Rn , 1982 .

[10]  A. D. Sands On the factorisation of finite abelian groups. II , 1962 .

[11]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[12]  Harmonic analysis of fractal measures , 1996, math/0604087.

[13]  G. Hajós,et al.  Sur le problème de factorisation des groupes cycliques , 1950 .

[14]  A. D. Sands,et al.  On the factorisation of finite abelian groups , 1957 .

[15]  P. Jorgensen,et al.  ESTIMATES ON THE SPECTRUM OF FRACTALS ARISING FROM AFFINE ITERATIONS , 2002, math/0208019.

[16]  P. Jorgensen,et al.  Spectral theory for Borel sets in Rn of finite measure , 1992 .

[17]  J. Lagarias,et al.  Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets , 1996 .

[18]  Robert S. Strichartz,et al.  Wavelets and self-affine tilings , 1993 .

[19]  J. Lagarias,et al.  Structure of tilings of the line by a function , 1996 .

[20]  Bent Fuglede,et al.  Commuting self-adjoint partial differential operators and a group theoretic problem , 1974 .

[21]  S. Pedersen Spectral Sets Whose Spectrum Is a Lattice with a Base , 1996 .