Comparing Pyrolysis Gases and Dusts Explosivities: A Clue to Understanding Hybrid Mixtures Explosions?

During the explosion of an organic dust cloud, the following steps are usually encountered: particle heating; its devolatilization/pyrolysis; and, then, a homogeneous combustion of the pyrolysis gases. In order to highlight the influence of the pyrolysis step in such explosions, experiments have been carried out on wheat starch powders and their pyrolysis gases. The maximum rate of pressure rise of the gases reaches 2830 bar s–1, whereas it remains lower than 400 bar s–1 for the starch at the same fuel equivalence ratio. Such a difference can be explained by the predominance of the pyrolysis step, but also, to a lesser extent, by changes in the initial turbulence level of the suspension. A model based on the flash pyrolysis mechanisms of cellulosic compounds and their combustion has been developed to represent the evolution of the explosion pressure of such powders. Applications to the case of gas/dust hybrid mixtures are also discussed.

[1]  Ömer L. Gülder,et al.  Turbulent premixed flame propagation models for different combustion regimes , 1990 .

[2]  A. Ouano,et al.  Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose , 1973 .

[3]  Olivier Authier,et al.  Wood Fast Pyrolysis: Comparison of Lagrangian and Eulerian Modeling Approaches with Experimental Measurements , 2009 .

[4]  G. Russo,et al.  Large Eddy Simulation and PIV Measurements of Unsteady Premixed Flames Accelerated by Obstacles , 2009 .

[5]  Donald S. Scott,et al.  On the mechanism of the rapid pyrolysis of cellulose , 1986 .

[6]  Laurent Perrin,et al.  Explosions of vapour/dust hybrid mixtures: A particular class , 2009 .

[7]  Ernesto Salzano,et al.  Dust/gas mixtures explosion regimes , 2011 .

[8]  Laurent Perrin,et al.  Dust/vapour explosions : Hybrid behaviours? , 2008 .

[9]  I. Sochet,et al.  Ignitability assessment of shredder dusts of refrigerator and the prevention of the dust explosion , 2006 .

[10]  Javier Garcia-Torrent,et al.  Inerting biomass dust explosions under hyperbaric working conditions , 1998 .

[11]  Paola Russo,et al.  Prevention and mitigation of dust and hybrid mixture explosions , 2010 .

[12]  E. Ramalho,et al.  Explosibility of cork dust in methane/air mixtures , 2006 .

[13]  A. Denkevits Explosibility of hydrogen–graphite dust hybrid mixtures , 2007 .

[14]  G. D. Saravacos,et al.  Thermal diffusivity of granular and porous foods at low moisture content , 1997 .

[15]  Olivier Bozier Contribution à l'étude des caractéristiques de combustion isochore d'une suspension de particules solides réactives : génération de la suspension, influence de l'état initial du mélange , 2004 .

[16]  G. Andrews,et al.  Determination of burning velocities: A critical review , 1972 .

[17]  Colomba Di Blasi,et al.  Modeling chemical and physical processes of wood and biomass pyrolysis , 2008 .

[18]  K. H. Shafer,et al.  Gas evolution and the mechanism of cellulose pyrolysis , 2001 .

[19]  O. Dufaud,et al.  Influence of the size distribution and concentration on wood dust explosion: Experiments and reaction modelling , 2005 .

[20]  Thomas A. Milne,et al.  Molecular characterization of the pyrolysis of biomass , 1987 .

[21]  A. D. Benedetto,et al.  Study of the severity of hybrid mixture explosions and comparison to pure dust–air and vapour–air explosions , 2011 .

[22]  A. Dahoe Dust Explosions: A Study of Flame Propagation , 2000 .

[23]  Tiziano Faravelli,et al.  Chemical Kinetics of Biomass Pyrolysis , 2008 .

[24]  C. Proust A few fundamental aspects about ignition and flame propagation in dust clouds , 2006 .

[25]  Kenneth L. Cashdollar,et al.  Overview of dust explosibility characteristics , 2000 .

[26]  M. Antal,et al.  Is the Broido-Shafizadeh model for cellulose pyrolysis true? , 1994 .

[27]  Paola Russo,et al.  Modelling the effect of particle size on dust explosions , 2010 .

[28]  Artur Gutkowski,et al.  AN EXPERIMENTAL STUDY ON FLAME PROPAGATION IN CORNSTARCH DUST CLOUDS , 2006 .