Geometric Diodes for Optical Rectennas

A new diode called a geometric diode rectifies based on geometric asymmetry of a conducting thin film. The planar structure of the geometric diode provides a low RC time constant (on the order of 10−15 s) that is required for rectenna operation at optical frequencies and a low impedance for efficient power transfer from the antenna. Fabricated graphene geometric diodes show asymmetric DC current–voltage characteristics consistent with Monte Carlo simulations for the devices. Coupled to an antenna to form a rectenna, we demonstrated rectification for 28 THz radiation. The geometric diode rectenna system detectivity is in theory 10 times higher than for a metal–insulator–metal diode operating at 28 THz. Applications for this diode include terahertz-wave and optical detection, ultrahigh speed electronics, and optical power conversion.

[1]  A. Rogalski Infrared detectors: status and trends , 2003 .

[2]  Sachit Grover,et al.  Optical rectenna solar cells using graphene geometric diodes , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[3]  O. Nayfeh Radio-Frequency Transistors Using Chemical-Vapor-Deposited Monolayer Graphene: Performance, Doping, and Transport Effects , 2011, IEEE Transactions on Electron Devices.

[4]  O. Vendik,et al.  Modeling and calculation of the capacitance of a planar capacitor containing a ferroelectric thin film , 1999 .

[5]  S. Datta,et al.  The non-equilibrium Green's function (NEGF) formalism: An elementary introduction , 2002, Digest. International Electron Devices Meeting,.

[6]  Colm Durkan,et al.  Current at the nanoscale: An introduction to nanoelectronics, second edition , 2007 .

[7]  Datta,et al.  Steady-state transport in mesoscopic systems illuminated by alternating fields. , 1992, Physical review. B, Condensed matter.

[8]  Mircea Dragoman,et al.  Geometrically induced rectification in two-dimensional ballistic nanodevices , 2013 .

[9]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[10]  Sachit Grover,et al.  Graphene geometric diodes for terahertz rectennas , 2013 .

[11]  P. Childs,et al.  Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model , 2010, Nanoscale research letters.

[12]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[13]  Aimin Song,et al.  Electron ratchet effect in semiconductor devices and artificial materials with broken centrosymmetry , 2002 .

[14]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.

[15]  J. Maultzsch,et al.  Tight-binding description of graphene , 2002 .

[16]  L. DiCarlo,et al.  Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene , 2007, Science.

[17]  F. J. González,et al.  Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .

[18]  S. Joshi,et al.  Ultrahigh speed graphene diode with reversible polarity , 2012 .

[19]  S. Tadigadapa,et al.  Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  Sachit Grover,et al.  Diodes for Optical Rectennas , 2011 .

[21]  G. Moddel,et al.  Applicability of Metal/Insulator/Metal (MIM) Diodes to Solar Rectennas , 2011, IEEE Journal of Photovoltaics.

[22]  Ali Javan,et al.  The MOM tunneling diode - Theoretical estimate of its performance at microwave and infrared frequencies , 1978 .

[23]  E. Pop,et al.  Mobility and Saturation Velocity in Graphene on SiO2 , 2010, 1005.2711.

[24]  J. Meindl,et al.  Breakdown current density of graphene nanoribbons , 2009, 0906.4156.