Inorganic semiconductor nanowires: rational growth, assembly, and novel properties.

Rationally controlled growth of inorganic semiconductor nanowires is important for their applications in nanoscale electronics and photonics. In this article, we discuss the rational growth, physical properties, and integration of nanowires based on the results from the authors' laboratory. The composition, diameter, growth position, and orientation of the nanowires are controlled based on the vapor-solid-liquid (VLS) crystal growth mechanism. The thermal stability and optical properties of these semiconductor nanowires are investigated. Particularly, ZnO nanowires with well-defined end surfaces can function as room-temperature ultraviolet nanolasers. In addition, a novel microfluidic-assisted nanowire integration (MANI) process was developed for the hierarchical assembly of nanowire building blocks into functional devices and systems.

[1]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[2]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[3]  Hari Singh Nalwa,et al.  Handbook of nanostructured materials and nanotechnology , 2000 .

[4]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[5]  Jacques Lefebvre,et al.  SINGLE-WALL CARBON NANOTUBE CIRCUITS ASSEMBLED WITH AN ATOMIC FORCE MICROSCOPE , 1999 .

[6]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[7]  J. Devreese,et al.  Highly conducting one-dimensional solids , 1979 .

[8]  T. Katsuyama,et al.  SITE-CONTROLLED GROWTH OF NANOWHISKERS , 1995 .

[9]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[10]  Masahiro Asada,et al.  Threshold current density of GaInAsP/InP quantum-box lasers , 1989 .

[11]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[12]  Peidong Yang,et al.  Microchannel Networks for Nanowire Patterning , 2000 .

[13]  Charles M. Lieber,et al.  Diameter-Selective Synthesis of Semiconductor Nanowires , 2000 .

[14]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[15]  S. Fan,et al.  Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction , 1997 .

[16]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[17]  C. L. Cheung,et al.  Growth and fabrication with single-walled carbon nanotube probe microscopy tips , 2000 .

[18]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[19]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[20]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[21]  Yiying Wu,et al.  Melting and Welding Semiconductor Nanowires in Nanotubes , 2001 .

[22]  Yasuhiko Arakawa,et al.  Quantum well lasers--Gain, spectra, dynamics , 1986 .

[23]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[24]  S. Noda,et al.  Full three-dimensional photonic bandgap crystals at near-infrared wavelengths , 2000, Science.

[25]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[26]  Y. Qian,et al.  In-Situ Source–Template–Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres , 2000 .

[27]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[28]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[29]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[30]  Yadong Li,et al.  A Novel Chemical Route to ZnTe Semiconductor Nanorods , 1999 .

[31]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[32]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[33]  Yiying Wu,et al.  Germanium/carbon core–sheath nanostructures , 2000 .