Two-Dimensional Fourier Cosine Series Expansion Method for Pricing Financial Options

The COS method for pricing European and Bermudan options with one underlying asset was developed in [F. Fang and C. W. Oosterlee, SIAM J. Sci. Comput., 31 (2008), pp. 826--848] and [F. Fang and C. W. Oosterlee, Numer. Math., 114 (2009), pp. 27--62]. In this paper, we extend the method to higher dimensions, with a multidimensional asset price process. The algorithm can be applied to, for example, pricing two-color rainbow options but also to pricing under the popular Heston stochastic volatility model. For smooth density functions, the resulting method converges exponentially in the number of terms in the Fourier cosine series summations; otherwise we achieve algebraic convergence. The use of an FFT algorithm, for asset prices modeled by Levy processes, makes the algorithm highly efficient. We perform extensive numerical experiments.

[1]  Cornelis W. Oosterlee,et al.  A Fourier-Based Valuation Method for Bermudan and Barrier Options under Heston's Model , 2011, SIAM J. Financial Math..

[2]  Wim Schoutens,et al.  The little Heston trap , 2006 .

[3]  Daniel Dufresne,et al.  Bessel Processes and Asian Options , 2005 .

[4]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[5]  N. Bershad,et al.  Random differential equations in science and engineering , 1975, Proceedings of the IEEE.

[6]  R. Lord,et al.  COMPLEX LOGARITHMS IN HESTON‐LIKE MODELS , 2010 .

[7]  Cornelis W. Oosterlee,et al.  Pricing high-dimensional Bermudan options using the stochastic grid method , 2012, Int. J. Comput. Math..

[8]  C. Oosterlee,et al.  Efficient pricing of commodity options with early-exercise under the Ornstein–Uhlenbeck process , 2010 .

[9]  Andrea Pascucci,et al.  Expansion formulae for local Levy models , 2011 .

[10]  Cornelis W. Oosterlee,et al.  Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.

[11]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[12]  M. Yor,et al.  Mathematical Methods for Financial Markets , 2009 .

[13]  J. M. Schumacher,et al.  Pricing High-Dimensional American Options Using Local Consistency Conditions , 2004 .

[14]  Christian Kahl,et al.  Not-so-complex logarithms in the Heston model , 2006 .

[15]  J. Lemmen CPB Netherlands Bureau for Economic Policy Analysis , 2006 .

[16]  Cornelis W. Oosterlee,et al.  Multi-asset option pricing using a parallel Fourier-based technique , 2008 .

[17]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[18]  Peter A. Forsyth,et al.  Numerical solution of two asset jump diffusion models for option valuation , 2008 .

[19]  C. Oosterlee,et al.  Pricing High-Dimensional American Options Using the Stochastic Grid Method , 2010 .

[20]  Shih-Feng Huang,et al.  Valuation of Multidimensional Bermudan Options , 2009 .

[21]  M. Broadie,et al.  The Valuation of American Options on Multiple Assets , 1997 .

[22]  Cornelis W. Oosterlee,et al.  On coordinate transformation and grid stretching for sparse grid pricing of basket options , 2008 .

[23]  P. Boyle,et al.  Numerical Evaluation of Multivariate Contingent Claims , 1989 .

[24]  René M. Stulz,et al.  Options on the minimum or the maximum of two risky assets : Analysis and applications , 1982 .

[25]  R. Lord,et al.  Why the Rotation Count Algorithm Works , 2006 .

[26]  Agnieszka Janek,et al.  C P ] 8 O ct 2 01 0 FX smile in the Heston model 1 , 2010 .

[27]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .