Dynamic moduli of magneto-sensitive elastomers: a coarse-grained network model.

The viscoelastic properties of magneto-sensitive elastomers (MSEs) in a low-frequency regime are studied using a coarse-grained network model. The proposed model takes into account the mechanical coupling between magnetic particles included in a whole network structure and magnetic interactions between them. We show that the application of a constant uniform magnetic field leads to the splitting of the relaxation spectrum into two branches for the motions of the particles parallel and perpendicular to the field. The shear dynamic moduli G' and G'' of MSEs are calculated as a function of frequency. The values of G' and G'' are shown to depend on the direction of the shear deformation with respect to the magnetic field. For instance, both G' and G'' decrease if the magnetic field is applied parallel to the shear velocity (D-geometry) and increase if it is applied along the shear gradient (G-geometry). The latter prediction is in a qualitative agreement with existing experimental data. The theory allows us to analyse experimental data and to extract the structural characteristics of MSEs.

[1]  V. Toshchevikov,et al.  Relaxation spectrum of a polymer network with included particles: A regular cubic network model with mutual friction , 2013, Polymer Science Series A.

[2]  L. C. Davis Model of magnetorheological elastomers , 1999 .

[3]  M. Zrínyi,et al.  Magnetic Field-Responsive Smart Polymer Composites , 2007 .

[4]  H. Kilian,et al.  Viscoelastic dynamic properties of heterogeneous polymer networks with domain structure , 2000 .

[5]  G. Heinrich,et al.  Theory of light-induced deformation of azobenzene elastomers: influence of network structure. , 2012, Journal of Chemical Physics.

[6]  Maria Balasoiu,et al.  Modelling of magnetodipolar striction in soft magnetic elastomers , 2011 .

[7]  Y. Raikher,et al.  Modeling of particle interactions in magnetorheological elastomers , 2014 .

[8]  Y. Gotlib Theoretical models and model theories of microbrownian motion in polymer networks , 1981 .

[9]  Georges Bossis,et al.  FIELD DEPENDENCE OF VISCOELASTIC PROPERTIES OF MR ELASTOMERS , 2002 .

[10]  D. Ivaneyko,et al.  Magneto-sensitive Elastomers in a Homogeneous Magnetic Field: A Regular Rectangular Lattice Model , 2011, 1107.2768.

[11]  S. Jerrams,et al.  A rheological model of the dynamic behavior of magnetorheological elastomers , 2011 .

[12]  M. Klüppel,et al.  Magneto-rheological response of elastomer composites with hybrid-magnetic fillers , 2015 .

[13]  Mark R. Jolly,et al.  The Magnetoviscoelastic Response of Elastomer Composites Consisting of Ferrous Particles Embedded in a Polymer Matrix , 1996 .

[14]  Andrew A. Gurtovenko,et al.  Viscoelastic dynamic properties of meshlike polymer networks: Contributions of intra- and interchain relaxation processes , 2000 .

[15]  M. Shamonin,et al.  Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. , 2014, Soft matter.

[16]  Nong Zhang,et al.  An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction , 2010 .

[17]  A. Boczkowska,et al.  Smart composites of urethane elastomers with carbonyl iron , 2009 .

[18]  Y. Raikher,et al.  Numerical modeling of large field-induced strains in ferroelastic bodies: a continuum approach , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  W. Hong,et al.  Field-stiffening effect of magneto-rheological elastomers , 2013 .

[20]  A. A. Gurtovenko,et al.  Generalized Gaussian Structures: Models for Polymer Systems with ComplexTopologies , 2005 .

[21]  A. Menzel,et al.  Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Y. Raikher,et al.  Magnetodeformation effect in a ferroelastic material , 2000 .

[23]  G. Heinrich,et al.  Mechanical properties of magneto-sensitive elastomers: unification of the continuum-mechanics and microscopic theoretical approaches. , 2013, Soft matter.

[24]  G. Heinrich,et al.  The level of cross-linking and the structure of anisotropic magnetorheological elastomers , 2012 .

[25]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[26]  N. Perov,et al.  Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  G. Bossis,et al.  Magnetostriction and piezoresistivity in elastomers filled with magnetic particles , 2005 .

[28]  H. Du,et al.  A dynamic absorber with a soft magnetorheological elastomer for powertrain vibration suppression , 2009 .

[29]  P. Pincus,et al.  A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit , 1983 .

[30]  Y. Gotlib,et al.  Shear Dynamic Modulus of Nematic Elastomers: Modified Rouse Model , 2009 .

[31]  Á. Delgado,et al.  Preparation and characterization of carbonyl iron/poly(butylcyanoacrylate) core/shell nanoparticles. , 2006, Journal of colloid and interface science.

[32]  J. Cavaillé,et al.  Shape effect in the magnetostriction of ferromagnetic composite , 2010 .

[33]  Alexander Blumen,et al.  Strange kinetics of polymeric networks modelled by finite fractals , 2002 .

[34]  J. Sommer,et al.  On the Structure of Star–Polymer Networks , 2011, 2103.16259.

[35]  Alexei R. Khokhlov,et al.  Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers , 2007 .

[36]  J. Ou,et al.  Magnetostrictive effect of magnetorheological elastomer , 2008 .

[37]  Mattias Lokander,et al.  Improving the magnetorheological effect in isotropic magnetorheological rubber materials , 2003 .

[38]  A. Blumen,et al.  Dynamics of Polymer Networks with Strong Differences in the Viscous Characteristics of their Crosslinks and Strands , 2007 .

[39]  A. Menzel,et al.  Structural control of elastic moduli in ferrogels and the importance of non-affine deformations. , 2014, The Journal of chemical physics.

[40]  G. Heinrich,et al.  Effects of particle distribution on mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field , 2012, 1210.1401.

[41]  Anisotropy in elastic modulus of hydrogel containing magnetic particles , 2006 .

[42]  J. Sommer On the dynamics of moderately crosslinked networks , 1991 .

[43]  G. Heinrich,et al.  Shear Dynamic Moduli of Stretched Polymer Chains and Networks: Modified Rouse Model , 2009 .

[44]  S. Kantorovich,et al.  Deformation mechanisms in 2D magnetic gels studied by computer simulations , 2012 .

[45]  Y. Gotlib,et al.  Theory of relaxation spectra and dielectric relaxation of rigid rodlike particles incorporated in a polymer network , 2006 .

[46]  Maxim Dolgushev,et al.  Dynamics of semiflexible regular hyperbranched polymers. , 2013, The Journal of chemical physics.

[47]  Alexander V. Chertovich,et al.  New Composite Elastomers with Giant Magnetic Response , 2010 .

[48]  Holger Böse,et al.  VISCOELASTIC PROPERTIES OF SILICONE-BASED MAGNETORHEOLOGICAL ELASTOMERS , 2007 .

[49]  J. Carlson,et al.  MR fluid, foam and elastomer devices , 2000 .

[50]  Xinglong Gong,et al.  Damping of Magnetorheological Elastomers , 2008 .

[51]  M. Zrínyi,et al.  Magnetodeformation effects and the swelling of ferrogels in a uniform magnetic field , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[52]  G. Heinrich,et al.  Multiscale Approach to Dynamic-Mechanical Analysis of Unfilled Rubbers , 2014 .