Stellar Activity on the Young Suns of Orion: COUP Observations of K5-7 Pre-Main-Sequence Stars

In 2003 January, the Chandra Orion Ultradeep Project (COUP) detected about 1400 young stars during a 13.2 day observation of the Orion Nebula Cluster (ONC). This paper is a study of the X-ray properties of a well-defined sample of 28 solar-mass ONC stars based on COUP data. Our goals are to characterize the magnetic activity of analogs of the young Sun and thereby to improve understanding of the effects of solar X-rays on the solar nebula during the era of planet formation. Given the length of the COUP observation we are able to clearly distinguish characteristic and flare periods for all stars. We find that active young suns spend 70% of their time in a characteristic state with relatively constant flux and magnetically confined plasma with temperatures kT2 ≃ 2.1 × kT1. During characteristic periods, the 0.5-8 keV X-ray luminosity is about 0.03% of the bolometric luminosity. One or two powerful flares per week with peak luminosities log LX ~ 30-32 ergs s-1 are typically superposed on this characteristic emission accompanied by heating of the hot plasma component from ≃2.4 to ≃7 keV at the flare peak. The energy distribution of flares superposed on the characteristic emission level follows the relationship dN/dE ∝ E-1.7. The flare rates are consistent with the production of sufficiently energetic protons to spawn a spallogenic origin of some important short-lived radionuclides found in ancient meteorites. The X-rays can ionize gas in the circumstellar disk at a rate of 6 × 10-9 ionizations per second at 1 AU from the central star, orders of magnitude above cosmic-ray ionization rates. The estimated energetic particle fluences are sufficient to account for many isotopic anomalies observed in meteoritic inclusions.

[1]  E. Feigelson,et al.  Chandra Orion Ultradeep Project Census of X-Ray Stars in the BN-KL and OMC-1S Regions , 2005 .

[2]  E. Feigelson,et al.  The Origin of T Tauri X-Ray Emission: New Insights from the Chandra Orion Ultradeep Project , 2005, astro-ph/0506526.

[3]  Rotational Modulation of X-Ray Emission in Orion Nebula Young Stars , 2005, astro-ph/0506164.

[4]  E. Feigelson,et al.  Bright X-Ray Flares in Orion Young Stars from COUP: Evidence for Star-Disk Magnetic Fields? , 2005, astro-ph/0506134.

[5]  E. Feigelson,et al.  X-Ray Emission from Young Brown Dwarfs in the Orion Nebula Cluster , 2005, astro-ph/0506049.

[6]  E. Feigelson,et al.  The Evolution of X-Ray Emission in Young Stars , 2005, astro-ph/0506052.

[7]  Andrew Szentgyorgyi,et al.  Accretion, Kinematics, and Rotation in the Orion Nebula Cluster: Initial Results from Hectochelle , 2005 .

[8]  J. Najita,et al.  Heating Protoplanetary Disk Atmospheres , 2004 .

[9]  M. Güdel X-ray astronomy of stellar coronae , 2004, astro-ph/0406661.

[10]  G. Tagliaferri,et al.  A Multiwavelength Perspective of Flares on HR 1099: 4 Years of Coordinated Campaigns , 2004, astro-ph/0402613.

[11]  Lynne A. Hillenbrand,et al.  An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks , 2003, astro-ph/0312189.

[12]  R. Wieler,et al.  The Predictable Collateral Consequences of Nucleosynthesis by Spallation Reactions in the Early Solar System , 2003 .

[13]  Michael C. Liu,et al.  A Giant Outburst at Millimeter Wavelengths in the Orion Nebula , 2003, astro-ph/0308277.

[14]  E. Feigelson,et al.  Determination of the gas-to-dust ratio in nearby dense clouds using X-ray absorption measurements , 2003, astro-ph/0306447.

[15]  B. Fuhrmeister,et al.  A systematic study of X-ray variability in the ROSAT all-sky survey , 2003, astro-ph/0303106.

[16]  F. Favata,et al.  Stellar Coronal Astronomy , 2003, astro-ph/0302565.

[17]  A. Dupree,et al.  The Structure of Stellar Coronae in Active Binary Systems , 2002, astro-ph/0210652.

[18]  S. Sciortino,et al.  Observational clues for a role of circumstellar accretion in PMS X-ray activity , 2002, astro-ph/0210258.

[19]  S. Sciortino,et al.  Chandra X-Ray Observation of the Orion Nebula Cluster. II. Relationship between X-Ray Activity Indicators and Stellar Parameters , 2002, astro-ph/0208475.

[20]  A. Davis,et al.  Short-Lived Nuclides in Hibonite Grains from Murchison: Evidence for Solar System Evolution , 2002, Science.

[21]  S. Sciortino,et al.  Coronal Variability in the Young Cluster NGC 2516 , 2002 .

[22]  M. Guedel Stellar Radio Astronomy: Probing Stellar Atmospheres from Protostars to Giants , 2002, astro-ph/0206436.

[23]  R. V. Wamsteker Joint Time–Frequency Analysis: A tool for exploratory analysis and filtering of non-stationary time series , 2002, astro-ph/0204186.

[24]  E. Feigelson,et al.  Magnetic Flaring in the Pre-Main-Sequence Sun and Implications for the Early Solar System , 2002, astro-ph/0202046.

[25]  L. Hartmann Physical conditions of protosolar matter , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Scott W. McIntosh,et al.  Waiting-Time Distributions in Lattice Models of Solar Flares , 2001 .

[27]  R. Neuhaeuser,et al.  X-ray emission from young stars in Taurus-Auriga-Perseus: Luminosity functions and the rotation - activity - age - relation , 2001, astro-ph/0107238.

[28]  S. Sahijpal,et al.  Did Solar Energetic Particles Produce the Short-lived Nuclides Present in the Early Solar System? , 2001 .

[29]  F. Shu,et al.  Extinct Radioactivities and Protosolar Cosmic Rays: Self-Shielding and Light Elements , 2001 .

[30]  F. Shu,et al.  The Origin of Chondrules and Refractory Inclusions in Chondritic Meteorites , 2001 .

[31]  M. Audard,et al.  First light measurements with the XMM-Newton reflection grating spectrometers: Evidence for an inverse first ionisation potential effect and anomalous Ne abundance in the Coronae of HR 1099 , 2000, astro-ph/0011018.

[32]  M. Wheatland,et al.  The Origin of the Solar Flare Waiting-Time Distribution , 2000, The Astrophysical journal.

[33]  L. Hillenbrand,et al.  Constraints on the Stellar/Substellar Mass Function in the Inner Orion Nebula Cluster , 2000, astro-ph/0003293.

[34]  P. Jupp,et al.  Statistical Analysis of the Energy Distribution of Nanoflares in the Quiet Sun , 2000 .

[35]  S. Kane,et al.  Investigations of the acceleration region of energetic electrons associated with decimetric type III and X-ray bursts , 2000 .

[36]  E. Feigelson,et al.  High-Energy Processes in Young Stellar Objects , 1999 .

[37]  L. Hartmann,et al.  Accretion processes in star formation , 1999 .

[38]  R. Osten,et al.  Extreme Ultraviolet Explorer Photometry of RS Canum Venaticorum Systems: Four Flaring Megaseconds , 1999 .

[39]  F. Shu,et al.  Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites , 1998 .

[40]  E. Fenimore,et al.  Gamma-Ray Bursts Have Millisecond Variability , 1998, astro-ph/9810271.

[41]  Jürgen Kurths,et al.  Wavelet Analysis of Solar Flare Hard X-Rays , 1998 .

[42]  Säm Krucker,et al.  Energy Distribution of Heating Processes in the Quiet Solar Corona , 1998 .

[43]  J. Scargle Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, a New Method to Analyze Structure in Photon Counting Data , 1997, astro-ph/9711233.

[44]  Manuel Güdel,et al.  The X-Ray Sun in Time: A Study of the Long-Term Evolution of Coronae of Solar-Type Stars , 1997 .

[45]  M. Güdel Are Coronae of Magnetically Active Stars Heated by Flares? , 1997, astro-ph/0312405.

[46]  L. Hillenbrand On the Stellar Population and Star-Forming History of the Orion Nebula Cluster , 1997 .

[47]  E. Lu Constraints on Energy Storage and Release Models for Astrophysical Transients and Solar Flares , 1995 .

[48]  J. Stauffer,et al.  Deep ROSAT HRI Observations of the Orion Nebula , 1995 .

[49]  John R. Stauffer,et al.  Coronal X-ray sources in the Hyades: A 40 kilosecond ROSAT pointing , 1994 .

[50]  M. Aschwanden,et al.  Frequency distributions of solar X-ray flare parameters , 1993 .

[51]  James M. McTiernan,et al.  Solar flares and avalanches in driven dissipative systems , 1993 .

[52]  S. Cristiani,et al.  Time series analysis in astronomy : an application to quasar variability studies , 1992 .

[53]  E. Lu,et al.  Avalanches and the Distribution of Solar Flares , 1991 .

[54]  H. Hudson Solar flares, microflares, nanoflares, and coronal heating , 1991 .

[55]  M. S. Matthews,et al.  The sun in time , 1991 .

[56]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[57]  B. Jones,et al.  Proper Motions and Variabilities of Stars Near the Orion Nebula , 1988 .

[58]  D. Schwartz Use of a minimum rate of change formalism to quantify variability of extragalactic X-ray sources , 1987 .

[59]  B. Garilli,et al.  A systematic search for long-term variability in a large sample of X-ray sources , 1987 .

[60]  M. Zeilik,et al.  Cool Stars, Stellar Systems, and the Sun , 1986 .

[61]  E. Feigelson X-Ray Emission from Young Stars and Implications for the Early Solar System , 1982 .

[62]  H. Zinnecker,et al.  Protostars and Planets IV OBSERVATIONS AND THEORY OF STAR CLUSTER FORMATION , 2022 .